
NASA-CR-191788

VIEWCACHE: An Incremental Pointer-Base Access Method

for Distributed Databases

Part I:

Part H:

Part Ill:

Part IV:

Part V:

The Universal Index System Design Document

The Universal Index System Low-Level Design Document

User's Guide

Reference Manual

UIMS Test Suite

Steve Kelley

Nick Roussopoulos
Timos Sellis

I[Advanced Communication Technology Inc.

1209 Goth Lane

Silver Spring, Maryland 20905

Final Report

SBIR Phase II Contract Number NAS5-30628

Prepared for

Goddard Space Flight Center

Greenbelt, Maryland 20771

October 10, 1992

(NASA-CR-191188) VIEWCACHE: AN

INCREMENTAL POINTER-BASE ACCESS

METHOD FOR DISTRIBUTED DATABASES.
PART I: THE UNIVERSAL INDEX SYSTEM

DESIGN DOCUMENT. PART 2: THE
UNIVERSAL INDEX SYSTEM tOW-LEVEL

DESIGN DOCUMENT. PART 3: USER'S

GUIDE. PART 4: REFERENCE MANUAL.
PART 5: UIMS TEST SUITE(Advanced

Communications Technology) 238 p

G3/82

N94-13126

Unclas

0186520

Advanced Communications Technology Inc.

Part I: The Universal Index System Design Document

Advanced Communications Technology Inc.

PROJECT SUMMARY

Today, there is a great diversity of computers, operating systems, database management systems, and

communication protocols. As a result of this heterogeneity, computer users are required to learn many dif-

ferent data access methods in order to obtain the information they need. This causes an attitude of "it's too

much trouble to learn all these different systems," which leads to a significant amount of software and data

duplication.

There are several approaches that can be taken to solve the heterogeneity problem: two of which are

standardization and uniformization. Standardization is the concept of choosing one specific system to use, and

expecting or requiring everyone to follow this standard. This, however, does not provide an adequate solution

because it could be extremely costly to change to the standard if a different system was being used. Uniformi-

zation is the concept of creating a layer on top of current systems that provides uniform access to all data,

regardless of the underlying system. This allows the underlying systems to remain unchanged, yet also pro-

vides a single common access method for users to access data.

The Universal Index System (UIS) is a system that uses uniformization to solve the heterogeneity prob-

lem among database management systems. UIS provides an easy-to-use common interface to access all under-

lying data, but also allows different underlying database management systems, storage representations, and

access methods.

SBIR Phase H.Final Report Design Document

AdvancedCommunicationsTechnologyInc.

1. SYSTEM OVERVIEW

1.1. Main UIS Components

UISisasystemthatmanagesandmaintainsindexes,sets,indexsets,andindexkits.An index is an object

that associates terms with pointers. A simple example of an index is the index of a book. It associates a term

used in the book with the page number(s) on which that term appears. Another example of an index is a sub-

ject index in a library catalog, which associates library books with different subjects.

A set is an object that contains only pointers. Usually sets are, created by extracting the pointer field

from an index. Using the example of a book's index, a set could be created from the index by the definition

"all the page numbers that contain the words 'database', 'data model', 'data definition language', or 'data

manipulation language'."

An indexset is a catalogued collection of indexes and sets. Every index and set must be associated with

exactly one indexset. In addition to the indexes and sets belonging to an indexset, an indexset also contains an

index catalog to maintain all the information for managing indexes, and a set catalog to maintain all the infor-

marion for managing sets.

An indexkit is a logical grouping of an introduction, index, dictionary and thesaurus. The introduction

component of an indexkit is an object which contains a textual description of the index. The dictionary com-

ponent of an indexkit is an object that associates terms given in the index with their definition. It is used to

assist the user in accessing the index. The thesaurus component of an indexkit is an object that associates

terms given in the index with other terms. The thesaurus supports both generalization and specialization of

terms in the index. The thesaurus is also used to assist the user in accessing the index. The introduction, dic-

tionary and thesaurus components are neither managed nor maintained by UIS. Figure 1 shows the relation-

ships among the different objects managed by UIS.

1.2. UIS Capabilities

UIS provides commands that allow the user to create and manipulate indexes, sets, indexsets, and index-

kits.

SBIR Phase H-Final Report Design Document

Advanced Communications Technology Inc.

INDEXSET
INDEXKITS

Index

!:ii]::!iii!_iiiiii:!ii:!i:
::::::::::::::::::::::
if!_!i_ii_ii_ii_::ii:ii:!::

i:i:i ii::i:ii_!i::!_iilii

Dictionary

,:,:+:+:+:.:+:+:,:

,!:::i_!:::!i:_:i:i:i:_:.:

Thesaurus

Figure 1 - Relationships among Indexes, lndexsets, Indexkits and Kitsets.

1.2.1. Index Commands

UIS uses the notion of current objects to simplify the index commands. The user specifies which

instance of an object is to be current i.e. to be "worked on," and then subsequent commands are performed on

the current object. The index commands rely on the existence of a current index, current index row, and

current index boolean.

The current index row is set to be the tuple in the current index that was most recently accessed by the naviga-

tion routines (see below for a description of the navigation routines). The current index boolean is a boolean

condition chosen by the user to assist in navigation.

UIS provides a relationally complete set of commands for indexes. In addition to commands that allow

the user to create, insert into, delete from, save and destroy indexes, there are routines that allow the user to

retrieve a previously created index for either modification or read only, return an index (the opposite of

retrieve) and pick an index to be the current index.

SBIR Phase H.Finai Report Design Document

Advanced Communications Technology Inc.

There are commands to allow the user to navigate both forward and backward through an index, access-

ing a single tuple at a time. UIS provides the user with index booleans and index selects to assist in this navi-

gation. An index boolean is a boolean condition defined by the user to restrict the search to a subset of the

index. For example, the user could define an index boolean, "camseq = "LFP1010" to restrict the search on

an index to only those tuples of an IUE index having "LFP1010" as camera sequence number. The user can

create index booleans during a user session, but they do not persist beyond the end of that session. UIS pro-

vides commands to create, modify, list (display), pick (make as current), and delete index booleans. There are

also commands to allow the user to reproduce indexes. These include copying and moving an index to an

indexset.

To support interfaces to programming languages, there are commands to allow the user to bind attribute

values to program variables, i.e. embedding UIS commands in an application written in C. There are two

commands for binding to program variables, one for binding a single attribute (column) from an index, and

one that allows for binding a whole row from an index. These commands cannot be used during an interactive

session.

1.2.2. Indexset Commands

UIS provides a few commands to manipulate indexsets. At this point a user can only create and destroy

indexsets. In the future, we plan to add commands such as include copy, subset, intersect, subtract and union,

and commands to copy and move indexsets.

1.2.3. Indexkit Commands

Although not implemented in the current prototype, several commands to manipulate indexkits have

been designed for UIS. In addition to commands that allow a user to create and destroy indexkits, there are

commands to allow the user to reproduce indexkits. These include copy, subset, intersect, subtract and union.

Subsetting an indexkit is defined to be a new indexkit, whose components are the result of subsetting each of

the components in the original indexkit. Intersecting two indexkits is defined to be a new indexkit, whose

components are the result of intersecting corresponding components of the two original indexkits. Similar

definitions hold for union and subtraction.

SBIR Phase H-Final Report Design Document

AdvancedCommunicationsTechnologyInc.

1.2.4.CommandSummary

Tables A, B, C, and D provide a summary of the index, set, indexset and indexkit commands, respec-

tively.

SBIR Phase H.Final Report Design Document

Advanced Communications Technology Inc.

Table A: Index Commands

Index Management Commands

create index drop index insert index

update index move index delete index

Index Reproduction Commands
copy index intersect index subset index

subtract index union index

Index Searching Commands

find term in index build set with term

build set with list build set with range

Index Browsing Commands

retrieve index pick index save index

return index list indexes

Index Navigation Commands

first in index next in index fetch using index

last in index previous in index

build index boolean list index booleans pick index boolean

modify index boolean drop index boolean

build index select list index selects pick index select

modify index select drop index select

Index Run-Time Environment Commands

bind index column bind index table

SBIR Phase ll-Final Report Design Document

AdvancedCommunicationsTechnology Inc.

Table B: Set Commands

Set Management Commands

build empty set drop disk set insert set

delete set update set

Set Reproduction Commands

combine sets restrict sets sort sets

Set Browsing Commands

retrieve set pick set build empty memory set save set

return set list sets drop set

Set Navigation Commands

first in set next in set fetch using set

last in set previous in set

build set boolean list set booleans pick set boolean

modify set boolean drop set boolean

build set select list set selects pick set select

modify set select drop set select

Set Run-Time Environment Commands

bind set column

SBIR Phase H-Final Report Design Document

AdvancedCommunicationsTechnologyInc.

Table C: Indexset Commands

Indexset Management Commands

create indexset drop indexset

alter indexset move indexset

lndexset Reproduction Commands

copy indexset intersect indexset subset indexset

subtract indexset union indexset

Indexspace Commands

create indexspace alter indexspace

Table D: Indexkit Commands

Indexkit Management Commands

create indexkit drop indexkit

update indexkit move indexkit

Indexkit Reproduction Commands

copy indexkit intersect indexkit subset indexkit

subtract indexkit union indexkit

SBIR Phase H-Final Report Design Document

Advanced Communications Technology Inc.

2. THE DESIGN OF UIS

The development of the UIS prototype was divided into several phases: the requirements phase, the

design phase, the implementation phase and the testing and integration phase. This approach was taken in an

attempt to resolve any conflicts in the proposed system as early as possible.

The requirements document contains a functional description of what the system should do. The purpose

of the design phase is to convert the functional description of what the system should do into an algorithmic

description of how the system should do it.

The design phase primarily concentrated on two tasks. First, we had to determine what information

needed to be available to the system during execution and what information needed to be available from one

execution to the next (persistent information). Second, we needed to translate the functional requirements of

the user commands into design specifications. These two tasks were performed in a stepwise fashion to yield a

cohesive and consistent design.

2.1. System Information

UIS manages and maintains four different types of objects: indexes, sets, indexsets, and indexkits. In

order to do so properly and efficiently, the system needs to have available certain information about each

object. As an example, consider a library: how useful or efficient would a library be if it did not have a cata-

log that listed what books were contained in the library, or where they were located? Probably not very useful,

definitely not very efficient. In the same way that a library catalogs all the objects that it manages, so must

UIS. This section describes which information UIS needs to efficiently manage its objects.

2.1.1. System Catalog -- Indexes

In Section 1 we defined conceptually what an index is. To determine what persistent information we

need for indexes, we need to know what an index is structurally. "Structurally, an index is a table in which

some of the columns are the items indexed and the last column is the pointer. An index is of type k if it has

k-item tuples (columns). The format of an index depends on the intemal representation of the index. Exam-

ples of formats are B-trees, R-trees, and heaps."

Given this structural definition, we see that some of the information that needs to be stored include the

name of the index, its type, and its format. Other information that is necessary are the attribute or column

SBIR Phase H-Final Report Design Document

Advanced Communications Technology Inc.

names, their types, lengths and their location within the tuple (offset). This information is necessary when

checking whether or not a user's command is valid, and to assist the system in locating and extracting attribute

values. Another piece of information used to assist the system in index manipulation and validation is the

index's tuple width (the total size of the tuple). In addition, we decided it would be helpful to store whether or

not a given index had an indexkit associated with it. This would allow us to remain consistent with the index-

kit system information (discussed later).

Because an index can have any number of attributes, we decided it would be easier to have two system

catalogs. The first one contains all the information about the index except for the attribute information. A

second catalog contains the attribute information. This approach was taken to simplify the catalog access rou-

tines (if a single catalog were used, the access routines would have to support variable length entries). Figure

2 describes pictorially the system catalog information for indexes. It contains two example indexes:

Index Catalog

ia,t_a Name lad_t TYPe Imltx Format

fotzz___9"tw 2 n-rune

SUBJECTS $ RTRF.E

lnd_tklt Name Indtlklt ml IiIdtil_ct

FOLLET EO'D¢ FOU.ET EARLY_WORKS

SURIECT UB UBRARY PG COUN1T

_¢a wmh

44

204

Attribute Catalog

Name Attribute Name

FOLLET EOTN TEiCM

FOU.Mr_EOTN

SUBJECTS

PAGE NUId

SURIECF_TERld

SUBIECT$ AIfI'HOR

5UBIECT5 TrfLE

SUBJECTS 15BN_NUMBER

$URIECTS 1.C_NUMBER

Attr TYPe Attr lxngth Attr Offmt

S'mtNG 40 0

tier 4 40

stRinG 40 0

STRING 40 40

S77UNG 100 80

STRING 12 180

Sr;UNG 12 192

Index Format =

{ BTREE, RTREE, HEAP }

AttrType =

{ INT,FLOAT.CHAR, STRING }

Figure 2 - System Catalog Information for Indexes.

SBIR Phase H.Final Report Design Document

Advanced Communications Technology Inc.

FOLLET_EOTN (a book index for Ken Follet's The Eye Of The Needle and SUBJECTS (a library catalog of sub-

jects which references books).

2.1.2. System Catalog m Indexsets

An indexset has several components (see Figure 3). It contains an index catalog discussed in the previ-

ous section, a set catalog, a transaction log, and then the indexes and sets themselves that belong in the index-

set. The transaction log contains information about updates to the indexes and sets in the indexset. It is used in

transaction management (currently unimplemented). UIS allows the user to explicitly specify all the buffer

management constants needed for the management of indexset components. As a result, the system catalog

information for indexsets must store all this information.

Before explaining the system catalog information for indexsets, we need to clarify what is meant by

databook and indexspace. When defining an indexset, the user creates a logical space in which indexes and

sets will belong at some point in the future. The databook objects are these logical spaces. An indexspace is

the physical storage space on the disk that corresponds to the logical space defined by the databooks. Index-

spaces can contain several databooks, and databooks can span more than one indexspace. Having the user be

able to specify both logical space and physical space allows the user to place indexes physically near each

other or logically near each other.

Given these new objects, an indexset is composed of the following components: index catalog, set cata-

log, transaction log, any number of databooks, and any number of indexspaces. For each of these components,

the system needs to have information about the names of each of these components, the initial physical size of

these components, their maximum size, and the rate at which these components can increase (when an inser-

tion needs to be made and there is no space, an increase is requested and as long as the maximum size has not

been reached, the increase is allowed).

Storing all this information creates a complicated system catalog structure. The databook and index-

space information for indexsets is stored in its own catalog. This is due to the fact that there can be any

number of these objects in an indexset (similar to the attribute information for indexes). Since the directory,

index catalog, set catalog and transaction log components are required for each indexset, and an indexset can

contain at most one of each component, all of this information can be stored in a single catalog along with the

indexset name. In addition, it was decided to have entries in this catalog for the total number of databooks and

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

INDEXSET

Databook I

index_pace A
I

J lndexspace B

Databaok 2

1_
I

J

• Figure 3 - Physical Structure of an Indexset

SBIR Phase H-Final Report Design Document O_aG_,AL PAc-f. :S
OF POOR QUALITY

Advanced Communications Technology Inc.

indexspaces in the indexset, to assist in retrieval from the other catalogs.

Figure 4 describes pictorially the system catalog information for indexsets. It contains two examples of

indexsets: FOLLET SET (an indexset that contains all the index information about Ken Follet's books) and

SUBJFL'r_SET (an indexset that contains all the subject information at a specific library). For example, the

index catalog component for FOLLET_SET says that the index catalog is located in the file FOLLETIDX. Its irfi-

tial size is 4096 bytes, and when the system needs more space for the index catalog, space is allocated in

blocks of 1096 bytes. If the size of the index catalog reaches 200000, no more space will be allocated to the

Indexset System Catalog

ISg"l'_ume # databook It Indeltspace

pott_ s_ 1 1

SuBjEcrsET 1 1

Dlrecto¢_ Info lades Catalog info Set Catxloll info _ l[nfo

Device ', Device ; Device ', P_._ ;

Name *FOLLETJ)IR Ham* 'o FOLLET-IDX Naw_e ,,FOLLET_SET Name *aFOLLET-LDG

...... _.................. :.................................... _,..........
lalmtt , 4096 Inlttd_, 4096 lan_tm ', 4096 Inl_thte , 4096

i i

thor,bee ', 1096 lncnta ', 1096 Incria ', 1096 latvia ', 1096
....... _,................. _;.................. ; _
Maxdu', 200000 Must_ , 200000 _tmt_, ,, 200000 _una_ ,, 200000

I I
De,_ , Devkt I Device ' DeC, c* I

Name _ SUBJECT.DIR Name i SUBJECT IDX Nxw_ ,'SUBJECT_SET Name ,,SUBJEL'T_LOG

.................................. 4 _ _, • ,
lnimu ', 4096 lnlU|u ', 4096 lalt_m ', 4096 ln0tm*', 4096

i i i

i_rsm ! 1096 lm:rsl_ ', 1096 laerdlm ', 1096 lacrtll ', 1096
', ,_.................. ,,.................. ,.................. ,........... ,

M.a-'z., 200000 Muti=.,, 200900 1_1=¢ ,, 200000 Mum* ,, 200000

Databook System Catalog

ISlgr_mme Devke name

FO_SET EARLYWORKS

SUBJECT_SET COMPUTER_SC

InlLllilz incrslze Maxull_

4096 1096 200000

4096 1096 200000

Indexspace System Catalog

ISlET_name Device_name InlIJIge

SUBJECT_SETCOWPtrrER_SC._PC4096

FOIJ..ETSET EARLY_WORgSSPC 4096

Incrtll_ Maxdtt

1096 400000

1096 200000

Figure 4 - System Catalog Information for Indexsets.

SBIR Phase II-Final Report Design Document

AdvancedCommunicationsTechnologyInc.

index catalog. The Databook System Catalog and the Indexspace System Catalog contain similar informa-

tion about the databooks and indexspaces in the indexset.

2.1.3. System Catalog -- Indexkits

As defined an Section 1, an indexkit is a logical grouping of an introduction, index, dictionary and

thesaurus. In order for the system to understand this logical grouping, it needs to keep track of which

instances of each component make up this logical grouping. As a result, the system information needed for

each indexkit is the name of the indexkit, the introduction name and its location (intro_set), the index name

and its location (indexset), the dictionary name and its location (dict_set), and the thesaurus name and its loca-

tion (thes_set) (Remember that the introduction, dictionary and thesaurus components arc not managed by

UIS). With this information, the system can efficiently execute all the indexkit commands.

Figure 5 illustrates the system catalog information for indexkits. It contains two example indexkits (they

correspond to the two index examples of Figure 2: FOLLET_EOTN (an indexkit corresponding to the index, hav-

ing the same name), and SUBIECT LIB (an indexkit corresponding to the subject index of a library catalog).

Indexkits are not implemented in the current prototype.

2.2. Run-Time Information

In addition to persistent information about each object in the system, during execution, there is a need to

track additional information about the state of objects currently being manipulated or accessed by the system.

Tracking such information is essential to maintaining a consistent system. This information will be particu-

larly crucial in a multi-user environment, when it is possible for different users to try to update the same data

Indexkit System Catalog

Indexklt Intro

Name Name

ot2zr FOt2Zr
EOTN EOTN /NTRO

SUBJECTS_

SUBJECT_UB INTRO

Intro

Set

FOC_7
INTROS

LIBRARY

INTROS

Index

Name

FOYEr
EOTN

SUBJECTS

Index

Set

FOU.m"
BOOKS

LIBRAR Y

Dk:fllom_

Name

FOLLET

DICTIONARY

SUBJECT_
DICTIONARY

Dktiomtrl

Set

NOV__
DICTS

LIBRARY

DICT_

Figure 5 - System Catalog Information for Indexkits.

Thlmlturul

Nm

NOVEL_

TILES

UBRARY

THES

SBIR Phase H-Final Report Design Document

Advanced Communications Technology Inc.

at exactly the same time. If the system were keeping no information about objects currently in the system,

then it would have no way of preventing different users from updating the same data at the same time; there

would be no way to guarantee a consistent system. This section describes what information UIS needs during

execution to maintain consistency of the objects.

2.2.1. Run-Time Information m Indexes

As described in Section 1, the index routines support the notion of a current index. What this means in

terms of execution, is that a user can have any number of indexes retrieved at a time (i.e. open and accessible),

of which at most one may be the current index. We adopted the notion of using a tag (unique identifier) to

identify indexes that have been retrieved to allow us to quickly access the indexes. As a result, anytime an

index is retrieved, an index tag is assigned to it. For each index that is retrieved by the system, the tag must be

readily available in order to manipulate the index. This run-time variable is designated by Index Tag.

A pointer into the index file must also be readily available to the system if the index is to be accessed at

all. Clearly, if the index weren't going to be accessed at all, there would be little reason for the user to retrieve

it. Therefore, a file descriptor for each index must also be kept as run-time information while the system is

being used. This run-time variable is designated by F_ptr.

An index can be retrieved for either modification or read only. There are two pieces of run-time infor-

mation that need to be kept related to the retrieval mode of indexes. The first is the actual retrieval mode. The

system needs to know whether an index has been retrieved for modification or read only in order to prevent the

user from trying to modify an index that was retrieved for read only. This is especially crucial in a mult-iuser

environment, when more than one user may want to access the same index. This run-time variable is desig-

nated by Mode. Secondly, the system needs to keep track of whether the index has actually been modified (in

the case of retrieval for modification). This information is used in the "save index" command. An index that

has been retrieved for modification, but not actually modified does not need to be saved even if the user issues

the save index command. Having this information available permits the system to detect these occurrences

and not waste its time saving an index that has not actually changed. This run-time variable is designated by

Dirty. Dirty is set to TRUE if the index has been modified, but not saved. Dirty is set to FALSE if the index

has not been modified since the last time it was saved.

SBIR Phase II-Final Report Design Document

AdvancedCommunications Technology Inc.

Finally, the system needs to know which indexes that are currently in the system have been created, but

not saved. The reason for this is as follows. We cannot guarantee that a newly created index will be small

enough to be completely contained in main memory. Therefore, when the user creates a new index, all per-

sistent information is entered into the system catalog and the index files are created. The system needs to be

able to distinguish these "created but not saved" indexes from those that either have been recently created but

saved, or those that were retrieved. This distinction is necessary because if the user quits the system without

saving these indexes, the system needs to know that they are to be deleted. This run-time variable is desig-

nated by Saved. Saved is set to TRUE if the index was retrieved during this user session (i.e. created sometime

in the past) or if the index was created during this user session and has already been saved. Saved is set to

FALSE if the index was created during this user session but has not yet been saved.

The remaining rim-time information that needs to be available is the information found in the system

catalog. Therefore, a pointer to the system catalog information is also needed at run-time. This run-time vari-

able is designated by SC_info. Figure 6 shows the information that UIS needs to manage and manipulate

indexes correctly.

2.2.2. Run-Time Information -- Indexsets

As defined in Section 2, an indexset is a catalogued group of indexes and sets. Therefore, when an index

or set is to be retrieved from an indexset, its system catalog information is found in the catalog components of

the indexset (refer to Figure 1). At execution time, the system needs to maintain file descriptors to the catalog

components of the indexset in order to be able to retrieve indexes and sets. These run-time variables are desig-

h_x Tall

i2 TRUE

MODII_

READ ONLY

Dlrl_

TRUE

FAL.SF+

SC_lnb F ptr

Figure 6 - Run-Time Catalog Information for Indexes.

SBIR Phase H-Final Report Design Document

AdvancedCommunications Technology Inc.

nated by Fd_I_cat, FdI_attr_cat, and Fd_S_cat. They correspond to the index catalog, the index attribute

catalog and the set catalog components of the indexset, respectively.

If multiple indexes or sets are retrieved from a single indexset, we need to be very careful in making sure

that only one set of catalog file descriptors are used for that indexset. If every retrieved index and set has its

own file descriptor information for the indexsets catalog, then it would be very easy for the system to

encounter read/write conflicts in the indexsets catalog components. Therefore, we need to have a way to main-

tain a single copy of the indexset information, and still know exactly how many indexes and sets from that

indexset are currently retrieved. This suggests a need for run-time variables to count the number of retrieved

indexes and sets for each indexset. This has two advantages. First, it prevents having multiple file descriptors

to the indexset catalog components and prevents read/write conflicts. Second, it allows us to have the indexset

retrieved for as small an amount of time as necessary. By keeping track of how many indexes and sets are

currently retrieved, the system is able to return the indexset as soon as those numbers are zero. The run-time

variables that designate these counts are I_count for indexes, and S_count for sets.

The remaining run-time information that needs to be available is the information found in the system

catalog. Therefore, pointers to the system catalog information are also needed at run-time. These run-time

variables are designated by SC_info, Databook, and Indexspace, which point to the different system catalog

entries for the indexset. Figure 7 shows the information that UIS needs to manage and manipulate indexsets

correctly.

2.2.3. Run-Time Information -- Indexkits

There is no run-time information needed for indexkits. Because an indexkit is nothing more than a col-

lection of system catalog information, all commands involving indexkits update only this system catalog

Fdl_cat Fd I attr cs! I co_t Fd_Sca!

8

S_co_t SC_lnfo

Figure 7 - Run-Time Catalog Information for Indexsets.

I_liboait Im

##

n

SBIR Phase II-Final Report Design Document

AdvancedCommunicationsTechnologyInc.

information.As a result, the catalog is only accessed at the exact moment a request is made.

notion of retrieving an indexkit, and at some later time making some modification to it.

There is no

SBIR Phase H-Final Report Design Document

Advanced Communications Technology Inc.

Part II: The Universal Index System Low-Level Design Document

SBIR Phase ll.Final Report Low-Level Design Document

Advanced Communications Technology Inc.

DESCRIPTION

User commands were designe.d at the same time as the system and run-time information was determined.

The designs for indexes and sets were done first, since they are the fundamental objects managed by UIS.

After those designs were almost complete, the indexkit and indexset commands were designed. This allowed

us to isolate the differences between the objects at an early stage, and also allowed us to use our complete

understanding of the index and set routines when trying to create an integrated design of the indexkit and

indexset routines.

A template was used while creating the designs to facilitate a complete design. Each design contains the

following sections: System Requirements, System Architecture, System Data Structures, System Data Flow,

System Control Flow, Design Rationale, Test Plan and Issues. The System Requirements section describes

the functionality of the command. It is taken from the requirements document. The System Architecture sec-

tion presents an algorithm in pseudo-code describing what the system needs to do to execute the command.

The System Data Structures section lists the input and output arguments needed to execute the command. Any

error messages that are returned are also included in this section. The System Data Flow section provides a

description of how the data flows among the different parts of the algorithm. The System Control Flow section

provides a description of how execution control flows among the different parts of the algorithm.

The Design Rationale section gives a detailed explanation of the algorithm, and if necessary justifies

why certain things are done, or why certain things need to be performed in a specific order. The Test Plan sec-

tion suggests what type of tests should be run to properly and completely test the command and suggests some

robustness tests. The Issues section discusses any side-effects of the routine, any hardware or software

requirements for the execution of the routine, and provides explanations for any unclear information presented

in the previous sections. The Issues section is also used to present unanswered questions about the design or

the interaction of this routine with others.

The low-level design of the index, indexset and indexkit commands follows.

SBIR Phase II.Final Report Low-Level Design Document

Routine Name: Create Index (I_create0)

Routine Number: 3.1.2.2

. System Requirements

Create index allows the user to create an index objecc The user

must specify the type of the index, the storage format, and the
attributes and their type that make up the index. Formats include

btrees, rtrees, ascii, virtual, etc. The type is expressed in the
form (m,n) where m is the multiplicity of the item tuples, and n is
the number of item tuples in the table.

2. System Architecture

paise

validate
create_index_fries

allocate_WA

assign_tag
RTIC_insert
SIC_insert

3. System Data Structures

1. Input

index_name

indexspace
Optional:

indexset

type
format
table

string
string

< the name for the index to create >

< indexspace to place index created >

string < indexset to place index created >
TYPE < dimension of index >

string < storage format: btree, rtree ... >
array of ATIR_DESC

< (attr_name,attr_type,attr_len) pairs
for each attribute that makes up the
index >

.

2. Output

tag TAG

System Data Flow

parse --> validate
validate --> create_index_files

allocate_WA

assign_tag
RTIC_insert
SIC_insert

create_index_files --> RTIC_insert
SIC_insert

assign_tag--> RTIC_insert

< tag of index created, NULL if error >

.

.

.

SIC_insert

System Control Flow

I_create<-- paise
validate

assign_tag
create_index_files
RTIC_insert
SIC_insert

Design Rationale

This routine will create an empty index. First it will check that the
index to create does not already exists. It will also check that the

type and format arguments are valid. It will also check that the
types of the attributes are valid attribute types. 12fnone of these
checks produces an error, then the index will be created, and a
catalog entry will be created for it. A logical tag will be assigned
to the newly created index. The catalog value for I_saved will be
FALSE (meaning that this index has not been saved since creation time),
index mode will be 'm' (for modify), and for dirty will be 'true',
so thatthe index will be saved as empty if no insertions are

performed.

Test Plan

Test all supported formats, all supported types, creation of
pre-existing index, insufficient arguments, and, of course, successful
creation of an index. Also test invalid formats to make sure error

is caught.

8. Issues

Routine Name: Drop Index (I_drop0)

Routine Number: 3.1.8.1

. System Requirements

The 'drop index' command allows the user to delete (or destroy) an
index.

2. System Architecture

parse

validate
remove_files

SIKC_update(indexkit information update)
SIC_delete

3. System Data Structures

1. Input

index_name string
indexset_name suing

< name of the index to delete >
< name of the indexset containing index >

2. Output

IME_OK
IME_FAILURE
IME_DNE
IME_BAD_MODE

SUCCESS

general error
index to drop does not exist
index not retrieved for modification

4. System Data Flow

parse --> validate
validate --> remove_files

SIKC_update
SIC_delete

,

.

System Control Flow

I_drop <-- paise
validate

remove_fries

SIKC_update
SIC_delete

Design Rationale

This routine will delete an index from an indexset. First, it will

check that the index to drop actually exists. If it does, then it
will be deleted, and the catalogs will be updated. If the index has
an indexkit associated with it, an indexkit call will be made to

updatetheindexkitcatalogentry.

Test Plan

Test all error codes.

Issues

Routine Name: Insert Index (I_InsertO)

Routine Number: 3.1.3.1.2

. System Requirements

The 'insert into index' command allows one to modify an index by

inserting a new row.

2. System Architecture

parse

validate

I_retrieve

for each tuple in the list
IC_insert(attr_name attr__value pairs)

I_save

3. System Data Structures

1. Input

index_name
indexset_name
attr_vals

string
string
array of
A'rTR_PAIR

< name of Index to be updated >
< indexset name of Index to be updated >

< (attribute name, value) pairs for index entry
to be inserted >

2. Output

IME_OK
IME_FAILURE
IME_NONUNIQUE
IME_BAD_VALUE
IM _DNE

I_insert successfid

general failure
non-unique indexset/name combination

bad pointer/attribute value
index DNE

. System Data Flow

parse -->
validate -->

validate
IC_insert

I_Save

5. System Control Flow

I_Insert <-- parse
validate

IC_insert
I_Save

6. Design Rationale

.

Tuple is inserted and Index is saved.

Test Plan

Test Cases should check for correct handling of invalid index names,

bad pointer values, and attribute values that are not part of the index.
Also check for attempt to insert incomplete tuples (containing NULLs).

8. Issues

Routine Name: Update Index (I_UpdateO)

Routine Number: 3.1.3.1.1

. System Requirements

The 'update index' command updates the specified index using

the given attribute and pointer values. The user must
specify a valid index name and indexset name, attribute value(s), and/or
pointer value(s), using the correct syntax to indicate whether the
pointer or the attribute is being altered.

2. System Architecture

parse

validate

IB_build

I_f'trst
I fetch

alter_tuple
IC_delete
IC_insert

(repeat as necessary the 6 following commands)
I_next
I__fetch

alter_tuple
IC_delete
IC_insert
I_save

3. System Data Structures

1. Input

index_name
indexset__name
set_vals

bool_val

string
string
array of
ATTR_PAIR

string

< name of Index to be updated >
< indexset name of Index to be updated >

< array of (attribute name, value) pairs
to be passed to IC_Update >

< condition to be used to build a
boolean to traverse the index and select

tuples to be modified >

2. Output

IME_OK
IME_FAILURE
IME_NONUNIQUE
IME_BAD_VALUE

ME_DNE

I_update successful

general failure
non-unique indexset/name combination
bad attribute value
index DNE

, System Data Flow

parse -->
validate -->

5. System Control Flow

validate

[B_build

I_first
I_fetch
alter_tuple
IC_delete
IC_inset
I_next
I_save

,

I_update<-- parse

validate
[B_build

I_ftrst
I_fetch
alter_tuple
IC_delete
IC_insert
I_next

I_save

Design Rationale

Get the index to be updated. Fetch tuples by traversing the index using the
boolean condition given in the update command (bool_val). Update each qualifying

tuple by setting the attributes/pointer as specifiexl in the update command
(set_vals). When no more tuples qualify, save the changes.

. Test Plan

Test Cases should check for correct handling of invalid index names,

bad pointer values, bad data values.

8. Issues

Routine Name: Move Index (I_move0)

Routine Number: 3.1.5.1

. System Requirements

The move index command allows the user to move an index from one
location to another. (potentially renaming the index in the

process).

2. System Architecture

parse
validate

check_uniqueness
move_index

RTIC_retrieve
RTIC_delete
RTIC_insert
SIC_retrieve
SIC_delete
SIC_insert

< update both indexset catalogs >

< update both indexset catalogs >

3. System Data Structures

1. Input

index_name
old_indexset
new_indexset

string
string
string

< name of the index to move >
< current location of index >

< place to move and name to give index >

2. Output

IME_OK
IME_FAILURE

IME_DNE
IME_NONUNIQUE

Success

general error
index to move non-existent
index to move will not be unique in new location

4. System Data Flow

parse -->
validate -->

move_index -->

validate

check_uniqueness
move_index
RTIC_retrieve

RTIC_delete
RTIC_insert

SIC_retrieve
SIC_delete
SIC_insert

5. System Control Flow

I_move <-- parse
validate

check_uniqueness
move_index
RTIC_retrieve
RTIC_delete
RTIC_insert
SIC_retrieve
SIC_delete
SIC_insert

. Design Rationale

This routine will move an index from one indexset to another. First
it will check that the index to move currently exists and will remain

unique in its new indexset. If so, it will move file index fries from
one indexset to another, updating the catalogs of both indexsets to

reflect the change.

7. Test Plan

Test all error codes.

8. Issues

Routine Name: Delete from Index (I_Delete0)

Routine Number: 3.1.3.1.3

1. System Requirements

The 'delete from index' command allows one to modify an index by

removing one index tuple or all the tuples with a given attribute value.

2. System Architecture

parse
validate

[B_build

I_f'trst

IC_delete

(repeat as necessary the 3 following commands)

I_next
IC_delete

I_save

3. System Data Structures

1. Input

index_name string
indexset_name string
bool_val string

< name of Index to be modified >
< indexset name of Index to be modified >
< boolean condition for traversing the

index and selecting tuples to be deleted >

2. Output

IME_OK
IME_NONUNIQUE
IME_BAD_VALUE

IME_DNE

I delete successflll

non-unique indexset/name combination
bad attribute/pointer value
index DNE

. System Data Flow

parse -->
validate -->

validate

[B_build
I_f'u'st
IC_delete

I_next
IC_delete
/_save

5. System Control Flow

.

I_delete <-- paise
validate

IB_build

I_f'trst
IC_delete
I_next
IC_delete
I_save

Design Rationale

Open the index. Position the pointer to point to a tuple, using the boolean
built with attr_vals. Delete that tuple, move on to the next one.

When no more tuples qualify, save the index.

. Test Plan

Test Cases should check for correct handling of invalid index names,

bad pointer values, and bad data values.

8. Issues

Routine Name: Copy Index (I_copyO)

Routine Number: 3.1.4.1.1

. System Requirements

The copy index command allows the user to make identical copies of
indexes.

2. System Architecture

[B =copy(A)]

parse
validate

I_retrieve(A)
I_create 03)

for each tuple in A
insert_tuple into B

end loop

I_save (B)
I_return(A)
I_return(B)

3. System Data Structures

1. Input

indexl
indexsetl
index2
indexset2

Optional:
format

string
string
string
string

string

< name for index to be copied from >
< indexset containing index 1 >
< name of the index to copy into >
< indexset to contain index2 >

< storage representation of index >

2. Output

IME_OK

IME_FAILURE

IME_DNE
IME_NONUNIQUE

success

general error
index to copy does not exist
new index name ;dready exists

4. System Data Flow

parse -->
validate -->

validate

I_retrieve
I_create

copy_loop
I_save
I_return

.

I_return

System Control Flow

I_copy <-- parse
validate

I_retrieve

l_create
copy_loop
I_save
I_return
I_return

. Design Rationale

This routine will make a duplicate copy of the si_ecified index (with

potentially a different format). First it will check that the index

to copy exists, and the resulting index will be unique. If no errors
are produced from these checks, then the new index will be created with
the same parameters as the index to be copied. The index name and
format are taken from the argument list. Specifying the format is

optional. If no format is specified, it is taken from the catalog
entry of the index to copy. The index is copied, and the catalog is
updated. The new index is saved and both indexes are returned.

7. Test Plan

Test all error codes.

8. Issues

Routine Name: Intersect Index (I_intersectO)

Routine Number: 3.1.4.1.4

. System Requirements

The 'intersect index' command allows the user to intersect indexes.

2. System Architecture

[C=A-B]

paise

validate

I_retrieve(A)
I_retrieve(B)

test_compatibility(A,B)
l_create (C)

for every tuple in A
if there exists an equivalent tuple in B then

insert_tuple(C)

end loop

I_save (C)
I_return(A)
I_return(B)
I_return(C)

3. System Data Structures

1. Input

indexl
indexsetl
index2
indexset2

new_index
indexset3

Optional:
new_index_format

string
string
string
string
string
string

string

< name of one index to intersect >

< indexset containing index 1 >
< name of the other index to intersect >

< indexset containing index2 >
< name of the new index to create >

< indexset containing new_index >

< see Create Index 3.3.2 >

2. Output

IME_OK
IME_FAILURE

IME_DNE
IME_NONUNIQUE
IM _INCOMPATIBLE

Success

general error
an index to intersect does not exist

index to create as result already exists
indexes to intersect are of incompatible types

4. System Data Flow

.

.

parse -->

validate -->

validate

I_retrieve
I retrieve

test_compatibility

I_create
intersection_loop

I_save
I_return
I_retum
I_retum

System Control Flow

I_intersect <-- parse
validate

I_retrieve
test_compatibility

I_create
intersection_loop

I_save
I_return
I_retum
I_return

Design Rationale

This routine wiU compute the intersection of two indexes. First it
will check that the two indexes to intersect actually exist and are of

compatible types. It will also check that the resulting index does
not already exist. If none of these checks produces an error, then
it will create the new index, compute the intersozfion, and save

the newly created index. The arguments passed to I_create will be
obtained from the catalog entry of the first index to be intersected.
The name of the index and the format of the index are provided by the

argument list. Specifying the format is optional. If it is not
specified, it will be taken from the first index to be intersected.

7. Test Plan

Test all error codes.

8. Issues

Routine Name: SubsetIndex (I_subset0)

Routine Number: 3.1.4.1.2

. System Requirements

The 'subset index' command allows one to make an index from a subset of

another index.

2. System Architecture

[B = subset(A)]

paise

validate

I_retrieve(A)

IS_syntax(select)
IB_build(boolean)

I_create(B)

get first record in index
test record with boolean
fetch record from index

insert into index using select

(repeat as necessary the 4 following commands)
get next record in index
test record with boolean

fetch record from index using select
insert into index

I_save(B)
I_return(A)
I_return(B)

3. System Data Structures

1. Input

indexl
indexsetl
index2
indexset2

select

bool_str

format

string
string
string
string
string

string

string

< name of index to be created >

< indexset containing index 1 >
< name of index to be subsetted >
< indexset to contain index2 >

< attribute names of indexed attrs
to be subsetted >
< boolean condition used to select

tuples to go into new iadex >
< indicates r-tree, b-tree, or ascii >

2. Output

IME_OK
IME_FAILURE
IME NONUNIQUE
IME_DNE

successful creation of subset index

general failure
non-unique indexset/name combination
index to subset from does not exist

, System Data

parse -->
validate -->

Flow

validate

I_retrieve
IS_syntax
IB_build
I_create

get_first_rec
fetch rec w select
insert_rec

get_next_rec
fetch_rec_w_select
insert_rec

I_save
I_return
I_return

. System Control Flow

I_subset <-- parse
validate

I_retrieve

IS_syntax
IB_build
l_create

get_ftrst_rec
fetch_rec w select
insert_rec

get_next_rec
I_save
l_return

l_retum

. Design Rationale

Check that index to subset exists, build select, build boolean,
check that the index to create with result does not already exist.

Create the new index. Navigate the index. Insert the selected parts

of the retrieved tuples into the newly created index. Save the new
index. Return the two indexes.

. Test Plan

Test Cases should check for correct handling of invalid index names,

bad format values.

8. Issues

Routine Name: Subtract Index (I_subtract0)

Routine Number: 3.1.4.1.5

° System Requirements

The subtract index command allows the user to subtract the different

parts of indexes.

2. System Architecture

[C=A-B]

paise
validate

I_retrieve(A)
I_retrieve(B)

tesLcompatibility(A,B)
I_create (C)

for every tuple in A
if there does not exist an equivalent tuple in B then

insert_tuple(C)

end loop

I_save (C)
I_return(A)
I_return(B)
I_return(C)

3. System Data Structures

1. Input

indexl
indexsetl
index2
indexset2
index3
indexset3

Optional:
new_index_format

string
string
string
string
string
string

string

< name of one index to subtract >
< indexset of index 1 >
< name of the other index to subtract >

< indexset of index2 >
< name of the new index to create >
< indexset of new index >

< see Create Index 3.3.2 >

2. Output

hME_OK
IME_FAILURE
IME_DNE
IME_INCOMPATIBLE
IME_NON_UNIQUE

Success

general error
an index to subtract does not exist
indexes to subtract are of incompatible types
index to create as result already exists

4. System Data Flow

.

o

parse -->
validate -->

validate

I_retrieve
I_retrieve
test_compatibility
I_create
subtraction_loop
I_save
I_return
I_return
l_return

System Control Flow

I_subtract <-- parse
validate

I_retrieve
I_retrieve
test_compatibility
I_create
subtraction_loop
I_save
I_return
I_return
I_return

Design Rationale

This routine will compute the subtraction of two indexes. First it
will check that the two indexes to subtract actually exist and are of

compatible types. It will also check that the restdting index does
not already exist. If none of these checks produces an error, then
it will create the new index, compute the subtraction, and save

the newly created index. The arguments passed to I_create will be
obtained from the catalog entry of the first index to be subtracted.
The name of the index and the format of the index are provided by the

argument list. Specifying the format is optional. If it is not
specified, it will be taken from the ftrst index to be subtracted.

7. Test Plan

Test all error codes.

8. Issues

Routine Name: Union Indexes (I_union0)

Routine Number: 3.1.4.1.3

. System Requirements

The 'union index' command allows one to create an index that is the

union of two other indexes.

2. System Architecture

[C = A union B]

paise
validate

I_retrieve(A)
I_retrieve(B)
test_compatibility(A,B)
I_create(C)

(for each index being unioned)

get first record in index
fetch record from index
insert into index

(repeat as necessary the 3 following commands)
next record in index
fetch record from index

insert into index

(end repeat for each index)

I_save(C)
I_return(A)
I_return(B)
I_retum(C)

3. System Data Structures

1. Input

indexl
indexsetl
index2
indexset2

new_index
indexset3

format

string
smng
stung
smng
stnng
stnng
stnng

< name of index to be unioned >

< indexset containing indexl >
< name of index to be unioned >
< indexset containing index2 >
< name of index to be created >

< indexset to contain new index >
< indicates r-tree, b-tree, or ascii >

2. Output

IME_OK successful union index

IM _FAILURE
IME_DNE
IME_NONUNIQUE
ME_INCOMPATIBLE

generalfailure
failure:indexdoesnotexist
non-uniqueindexset/namecombination
indexesto union_treincompatible

. System Data

parse -->
validate -->

Flow

validate

I_retrieve
I_retrieve
test_compatibility
I_create
union_loop
I_save
I_return
I_return
I_retum

5. System Control Flow

I_union <-- paise
validate

I_retrieve
I_retrieve

tesLcompatibility
I_create
union_loop
I_save
I_return
I_return

I_return

. Design Rationale

Check that indexes to union exist and are compatible, and check
that the index to create as result does not already exist.
Create the new index. Navigate the indexes being unioned, retrieving

tuples and inserting them into the newly created index. Save the
newly created index, and return all indexes retrieved and created.

. Test Plan

Test Cases should check for correct handling of invalid index names,

bad format values.

. Issues

Boolean is TRUE and Select is *

Routine Name: Find Term in Index (I_find_term0)

Routine Number: 4.1.1.3

. System Requirements

The 'find term in index' command will enable the user to obtain from
the current index component a list of terms alphabetically surrounding

a submitted term in the logical text file.

In the Menu access, the default editor is automalically invoked to

read the logical text file. In the Host Language Interface, the result
can also be in the logical text string.

2. System Architecture

process form

parse
validate

IB_build

get first record in index
test record with boolean
fetch record from index
add to term list

(repeat as necessary the 3 following commands)
get next in index
test record with boolean
fetch record from index

add to term list

Return Term List

3. System Data Structures

1. Input (input is gotten by Process_form and returned in a string)

term_string string < string form "attr_name attr_value" >

2. Output

term_list array of
strings

< each string is a found term.
NULL value indicates error or no
terms found >

4. System Data Flow

form_new -->

parse -->
validate -->

parse
validate

IB_build

get_first_rec

.

.

.

.

fetch_rec
add_totermlist

get_nexLrec
fetch_rec
add_to_term_list
return_term_list

System Control Flow

I_Find_Term<-- form_new

parse
validate

IB_build

get_flrst_rec
fetch_rec
add to term_list

geLnext_rec
return_term_list

Design Rationale

A boolean is built using 'term' and some pre-set range decided by the

system to be an acceptable alphabetical range for single term queries.
The index is navigated and terms are added to the term-list as they are
fetched. The term-list is returned when the entire index has been

searched.

Test Plan

Test Cases should check for correct handling of invalid attribute names

and bad term values.

Issues

The pre-defined ranges axe set in the system.

Routine Name: Build Set from Index with Term (I_build_set_term0)

Routine Number: 4.1.1.4.1

I . System Requirements

The 'build set with term' command will enable the user to build a set
of Entrids which are associated with a submitted term in the current

index. The system will assign a tag to the new _,;etand print in the
logical text file the set tag, set description, and set size.

In the Menu access, the logical text file is automatically displayed.
In the Host Language Interface access, the result can also be in the

logical text string.

2. System Architecture

parse
validate

IB_build

S_build_empty
get fn'st record in index
fetch record from index using select
insert into set

(repeat as necessary the 3 following commands)
next in index

fetch record from index using select
insert into set

return set description

3. System Data Structures

1. Input

set_name string
attr_name string
term string
set_attr string

< name of the set to be built >
< name of the attribute for the term >
< term to be searched for >

< attribute to put build set from >

2. Output

set_desc SET_INFO < string containing set tag, set
description, and set size. NULL
value indicates error >

4. System Data Flow

parse -->
validate -->

validate

S_build_empty

o

,

IB_build

get_.fu'st_rec
fetch rec
insert_into_set

get._next_rec
fetch_rec
insert_into_set
return set desc

System Control Flow

I_build_set_w_term <--

Design Rationale

parse
validate

S_build_empty
IB_build

get_first_rec
test w boolean

fetch_rec
insert_into_set

get_next_rec
return set desc

A boolean is built using 'term'. The index is na, Agated and pointer
values are added to the set as they are fetched.

The set description is returned when the entire index has been
searched.

7. Test Plan

Test Cases should check for correct handling of invalid attribute names
and bad term values.

8. Issues

Routine Name: Build Set from Index with List (I_build set list())

Routine Number: 4.1.1.4.2

. System Requirements

The 'build set with list' command will enable the user to build a set
of Entrids which are associated with a list of terms contained in a
submitted file in the current index. The system will assign a tag to

the new set and print in the logical text file the set tag, set

description, and set size.

In the Menu access, the logical text f'de is automatically displayed.
In the Host Language Interface access, the result can also be in the

logical text string.

2. System Architecture

parse
validate

IB_build

S_build_empty

get first record in index
test record with boolean
fetch record from index
insert into set

(repeat as necessary the 3 following commands)
next in index
test record with boolean
fetch record from index
insert into set

return set description

3. System Data Structures

1. Input

seLname string
attr_name string
term_list array of strings

set_attr string

< name of the set to be built >
< name of the attribute for the terms >
< terms to be searched for >

< attribute to project into set >

2. Output

set_desc SET_INFO < contains set tag, set description,
and set size. NULL value indicates

elTor >

4. System Data Flow

.

.

paise -->
validate -->

validate

S_build_empty
IB_build

geLfwst_rec
fetch_record

insert_into_set

geLnext_rec
fetch_rec
insert_into_set
return_seLdesc

System Control Flow

I_build_set_list <--

Design Rationale

parse
validate

S_build_empty
IB_build

get_ftrst_rec
fetch_record
insert_into_set

geLnexLrec
return set desc

A boolean is built using the terms in 'term_list'. The index is

navigated and pointer values are added to the se_ as they are fetched.
The set description is returned when the entire hadex has been
searched for every term in the list.

7. Test Plan

Test Cases should check for correct handling of invalid attribute names

and bad term values.

8. Issues

Routine Name: Build Set from Index with Range (I._build_set_range0)

Routine Number: 4.1.1.4.3

o System Requirements

The 'build set with range' command will enable the user to build a set

of Entrids which are associated with a boolean expression in the
current index. The system will assign a tag to the new set and print in

the logical text file the set tag, set description, mad set size.

In the Menu access, the logical text file is automatically displayed.

In Host Language Interface access, the result can also be int the

logical text string.

2. System Architecture

parse
validate

IB_build

S_build_empty

get first record in index
test record with boolean
fetch record from index
insert into set

(repeat as necessary the 4 following commands)

get next record in index
test record with boolean
fetch record from index
insert into set

return set description

3. System Data Structures

1. Input

set_name string
am_name string
term_list arry of strings
set_am" string

E.g.

< name of the set to be built >
< name of attribute having values >
< values to create range from >

< attribute to project into set >

If term_list = { 1, 12, 18, 22, 29, 33, NULL }
then that means get all tuples from the current index
where 1 < attr_name < 12 OR

18 < attr_name < 22 OR
2c_ < attr_name < 33

2. Output

set_desc SET_INFO < entries contain set tag, set description,
and set size. NULL indicates error >

.

°

°

System Data Flow

parse -->
validate -->

System Control Flow

validate

S_build_empty
IB_build

get_first_rec
fetch_rec
insert_into_set

get_next_rec
fetch_rec
insert_into_set
return_set_desc

I_build_set w range<--

Design Rationale

parse

validate

S_build_empty
IB_build

get__fwst_rec
fetch_rec
insert_into_set

geLnext_rec
insert_into_set
return_set_desc

A boolean is built using the information in term__list to build the

range as described above. The index is navigated and pointer values
are added to the set as they are fetched. The set description is
returned when the entire index has been searched.

7. Test Plan

Test Cases should check for correct handling of invalid attribute names

and bad term values.

8. Issues

Routine Name: Retrieve Index (I_retrieve0)

Routine Number: 4.1.1.1.1

. System Requirements

The 'retrieve index' command enables the user to retrieve or open an

index component. The retrieval can be for 'rea_l-only' or 'modify' mode.

The system will automatically assign the retrievezt component to a
logical tag. If the component does not exist, then an error message
appears in the logical error f'de.

2. System Architecture

pa/3e
validate

SIC_retrieve
RTIC_insert

3. System Data Structures

1. Input

index_name string
indexset_name string

mode integer

< name of index to be retrieved >
< indexset name of index to be
retrieved >

< signifies read-only or modify mode >

2. Output

IME_OK
IME_FAILURE

IME_DNE

successful retrieval of index

general failure
index does not exist

4. System Data Flow

parse --> validate
validate --> SIC_retrieve

RTIC_insert

5. System Control Flow

I_retrieve <-- paise

validate

SIC_retrieve
RTIC_insert

. Design Rationale

First check that the index is not already retrievexl, and if

so, return an error. Otherwise, retrieve the system catalog
information, assign it a tag, and update the RT catalogs to

,

.

reflect this.

Test Plan

Test all error codes, plus the retrieval of an already retrieved

index.

Issues

Should you be allowed to retrieve the same index more than once?
-->NO

Routine Name: Pick Index (I_pick0)

Routine Number: 4.1.1.1.3

1. System Requirements

The 'pick index' command will enable the user to make as 'current'
one of the retrieved index components. If the component does not exist,

then an error message appears in the logical errc)r file.

2. System Architecture

parse
validate

RTIC_retrieve
I_bind_retrieve

CWA_Iupdate

3. System Data Structures

1. Input

tag TAG < identifier for retrieved index >

2. Output

IME_OK
IME_BAD_TAG

successful picking of index

bad tag

4. System Data Flow

parse --> validate
validate --> RTIC_retrieve

CWA_I_update

5. System Control Flow

I_pick <-- parse
validate

RTIC_retrieve

CWA_I_update

, Design Rationale

Search the RTC for the tag of the index to be made current. When a
match is found, update the CWA to point to the RTC entry for that
index. Also, update the pointer to current binding for the newly

picked index.

7. Test Plan

Test for invalid tag values and tags that don't belong to an index

component.

8. Issues

Thecurrentindexbooleanandcurrentindexsele_ctareautomatically
updatedto thedefaultboolean(TRUE)andselect(*), to gurantee
thatatall timesthebooleanandselectarecompatiblewith the

Routine Name: SaveIndex (I_save0)

Routine Number: 4.1.1.1.4

. System Requirements

The 'save index' command enables the user to save the 'current'

retrieved index component. If the component was not retrieved in

'modify' mode, then an error message appears in the logical error file.

2. System Architecture

parse
validate

flush buffers to disk

RTIC_update

3. System Data Structures

1. Input

2. Output

IME_OK
IME_FAILURE
IME_BAD_MODE
IME_BAD_TAG

successful save

general failure
wrong mode on index
invalid tag

4. System Data Flow

parse -->
validate -->

validate

flush_buffers to disk

RTIC_update

5. System Control Flow

I_save <-- parse
validate

flush_buffers to disk

RTIC_update

. Design Rationale

After validating that the index is open for modify mode and has
been modified since the last save, flush the buffers containing the

updated copy of the index to disk. Update the RTC to reflect that the
index has not been modified since the last save.

7. Test Plan

Test for bad mode.

Routine Name: Return Index (I_return0)

Routine Number: 4.1.1.1.5

° System Requirements

The 'return index' command will enable the user to return a retrieved

index component. If the index was retrieved for modify mode and
was not saved, the an error message appears in the logical error file.

2. System Architecture

parse

validate

RTIC_delete

CWA_I_update
I_bind_delete

(if necessary)

3. System Data Structures

1. Input

tag TAG < tag for index to be returned >

2. Output

IME_OK
IME_FAILURE

IME_NOTS AVED
IME_BAD_TAG

successful save

general failure
index modified but not saved

bad tag value

4. System Data Flow

parse --> validate
validate --> RTIC_delete

CWA_I_update
I_bind_delete

5. System Control Flow

I_return <-- parse

validate

RTIC_delete
CWA_I_update
I_bind_delete

° Design Rationale

First check to see if any modification has been done since the last
save, and if none has, remove its entry from the RTC. If the index

you are returning is the current index, then the CWA for indexes will

o

8.

have to be updated. If the index has been moditied, it will still
be returned, but an error message is returned.

Test Plan

Test for bad tags and for an attempt to return a modified index before

saving it.

Issues

Since minirel is being used as the underlying system, when an index
that has been modified is returned, it is considered saved. In other

words, the modifications become permanent.

Routine Name: List Indexes

Routine Number: 4.1.1.1.2

1. System Requirements

.

.

.

(I_listO)

The 'list indexes' command will enable the user to obtain a list of the

retrieved index components of the current book.

In the Menu access, the default text editor is automatically invoked

to read the logical text file. In Host Language Interface access, the
result can also be in the logical text string.

System Architecture

RTIC_traverse

System Data Structures

1. Input

2. Output

val_list LIST < a structure containing the number

of indexes currently retrieved, and

an array of tag, index-name
pairs about each index >

System Data Flow

.

.

.

System Control Flow

I_list <-- RTIC_traverse

Design Rationale

Search the run-time catalog for indexes, return the tag, name, and
indexset name of each index entry found.

Test Plan

Test for case where there are no retrieved indexes.

8. Issues

Routine Name: First in Index (I_f'u'stO)

Routine Number: 4.1.1.5.1.1

. System Requirements

The 'first in index' command will enable the user to position the

curent row pointer to point to the In'st row of the current index
component with respect to the current index boolean (see section
4.3.5.2). If no such row is found, then an error is indicated in the

logical error file.

2. System Architecture

parse

validate

search with boolean

I_bind_info

CWA_I_update

3. System Data Structures

1. Input

2. Output

IME_OK
IME_FAILURE
IME_NO_CURRENT
IME_NO_QUALIFY

successful search

general failure
no current index

no qualifying row

4. System Data Flow

parse -->
validate -->

validate
search, w boolean

I_bind_info
CWA_I_update

5. System Control Flow

I_first <-- parse
validate

search w boolean
I_bind_info

CWA_I_update

. Design Rationale

This routine will search from the beginning of the index f'fle, looking

for the first tuple in the index to satisfy the current index boolean.
I_current_row is updated. Binding to program variables is performed.

. Test Plan

Test all error codes.

8. Issues

Routine Name: Next in Index (I_next0)

Routine Number: 4.1.1.5.1.2

. System Requirements

The 'next in index' command will enable the user to position the

current row pointer in the CWA to point to the next row of the current
index component with respect to the current index boolean (see section
4.3.5.2). If no such row is found, then an error is indicated in the

logical error file.

2. System Architecture

parse

validate

relative search with boolean

I bind info
O_VAj_update(l_cttrrent_row)

3. System Data Structures

1. Input

2. Output

IME_OK
IME_FAILURE
IME_NO_CURRENT
IME_NO_QUALIFY

successful search

general failure
no current row

no qualifying row

4. System Data Flow

parse -->
validate -->

validate
relative_search_w_boolean

I_bind_info
CWA_I_update

5. System Control Flow

l_next <-- parse
validate

relative_search w boolean
I_bind_info

CWA_I_update

. Design Rationale

Relative_Search_w_Boolean will search from the value of I_current_row
forward through the index, looking for the next tuple that satisfies
the current index boolean. Binding to program variables is performed.

Test Plan

Test for case with no qualifying row.

Issues

Routine Name: Fetch from Index (I_fetch0)

Routine Number: 4.1.1.5.1.4

. System Requirements

The 'fetch from index' command will enable the user to obtain a
row of the current index component with respect to the current index
row address. The row is output to the logical text file. The
amount of the row output is defined by the current index select (see

section 4.3.5.3).

In the Menu access, the default text editor is automatically invoked

to read the logical text file. In Host Language Interface access, the
result can also be in the logical text file, logical text string, or

assigned to program variables (see section 4.3.7).

2. System Architecture

parse
validate

return tuple

3. System Data Structures

1. Input

2. Output

tuple_val TUPLE < selected parts of the current index row
will be null if there's an error >

4. System Data Flow

parse --> validate
validate --> remrn_mple

5. System Control Flow

I_fetch<-- parse
validate

return_tuple

. Design Rationale

Return the tuple pointed to by the current row pointer in the current

working area.

7. Test Plan

8. Issues

Routine Name: Last in Index (I_last0)

Routine Number: 4.1.1.5.1.5

° System Requirements

The 'last in index' command will enable the user to position the

current row point of the CWA to point to the last row of the current
index component with respect to the current index boolean (see section
4.3.5.2). If no such row is found, then an error is indicated in the

logical error file.

2. System Architecture

parse
validate

backward search with boolean

I_bind_info

CWA_I_update

3. System Data Structures

1. Input

2. Output

IME_OK
IME FAILURE
IME_NO_CURRENT
IME_NO_QUALIFY

successful search

general failure
no current index

no qualifying row

4. System Data Flow

parse -->
validate -->

validate
backward_search w boolean

I_bind_info
CWA_I_update

5. System Control Flow

I_last <-- parse
validate

backward_search w boolean

I_bind_info
CWA_I_update

. Design Rationale

This routine wiU search backward from the end of the index file

looking for the first (remember searching backward) tuple that
satisfies the current index boolean. The value of I_current_row is

updated.Binding to programvariablesis performed.

Test Plan

Test all error codes.

Issues

Routine Name: Previous in Index

Routine Number: 4.1.1.5.1.3

i.

.

.

.

.

.

(I_previous0)

System Requirements

The 'previous in index' command will enable the user to position the
current row pointer in the CWA to point to the previous row of the
ctwrent index component with respect to the current index boolean (see
section 4.3.5.2). If no such row is found, then an error is indicated

in the logical error file.

System Architecture

parse
validate

relative backward search with boolean

l_bind_info

CWA_I_update

System Data Structures

1. Input

2. Output

IME_OK
IME_FAILURE
IME_NO_CURRENT
IME_NO_QUALWY

successful search

general failure
no current row

no qualifying row

System Data Flow

parse -->
validate-->

validate
relative_backward_search w boolean

I_bind_info

CWA_I_update

System Control Flow

I_previous <-- parse
validate

relative_backward_search w boolean

I_bind_info
CWA_I_update

Design Rationale

Get the previous row wrt the current row and current boolean. Update
the CWA current row pointer. Binding to program variables is

performed.

o

8.

Test Plan

Test all error codes.

Issues

Routine Name: Build Index Boolean (IB_build0)

Routine Number: 4.1.1.5.2.1

o System Requirements

The system will enable the user to build an index boolean for
navigating through the index rows. The user rezeives in the logical
text file an index boolean form for building such a boolean. The user

completes the form and submits it. The system assigns the index
boolean a tag. If an error in building the boolean is made,
then an error is returned.

In Menu and Command access, the form is input/ouput through the logical

text file. In the Menu access, the default text editor is

automatically invoked to build the form. In Host Language Interface
access, the form can be built through the logical text string.

2. System Architecture

form_new

parse
validate

assign_tag
RTI_BC_insert

3. System Data Structures

1. Input

2. Output

tag TAG the tag of the index boolean just created.
NULL if error occurs.

4. System Data Flow

forn'l_new

parse
validate

--> parse
--> validate

--> assign_tag
RTI_SC_insert

5. System Control Flow

IS_build <-- form_new

parse
validate

assign_tag
RTI_SC_insert

. Design Rationale

This routine will build an index boolean and insert it into the

.

8.

catalog. The user is given a form to complete defining the index
boolean. This definition is then parsed into an iatemal format,

checking that the expression is syntactically conect. A catalog
entry is created and a tag is assigned to the boolean definition.
There is no compatibility check done at this time. That is done at
the time the user 'picks' the index Boolean as current.

Test Plan

Issues

This routine receives it's input from form_new that is

spawned. The form_new will give this routine's input in

string format.
Boolean_fist string < boolean condition >

It is up to us to parse the string into our internal format.

A valid boolean condition must follow the following rules:

Relational operators supported are <, >, =, <>, <=, >=.

Logical operators supported are AND, OR, NOT.
Attribute types supported are characters, integers, floats,

and strings.
A simple clause is of the form:
[NOT] <attr_name> <rel_op> { <attr_name> I <constant> }

NOT is optional, and if specified implies the negation
of the entire simple clause. The first operand MUST ALWAYS
be an attribute name. The second operand can be either an
attribute name or a constant.
Constants are of the following forms:

Ingeter constants the number e.g. 345 10 0 -3
Float constants the number e.g. 3.1415 0.3 -3.553
Character constants the character enclosed in single quotes

e.g. 'a' 'x' "_' '@' '1'

String constants the string enclosed in double quotes
(note the quotes are NOT pan of the string)
"cindy Delaware TOMORROW"

Simple clauses can be connected using AND or OR.
No order of evaluation can be imposed using parenthesis.
The boolean is evaluated such that AND has higher operator precedence

than OR.

E.g. A < B AND C > D OR A < E is automatic;ally evaluated as the
followin, ((A < B) AND (C > D)) OR (A < E).
The user'is responsible for ensuring that these x_ales are followed.

Routine Name: List Index Booleans (IB_List0)

Routine Number: 4.1.1.5.2.2

1. System Requirements

The 'list index booleans' command will enable the user to obtain a list

in the logical text f'Lle of all of the constructed Index Booleans.
The list contains the boolean tag and the boolean body for each

boolean.

In the Menu access, the default text editor is automatically invoked to
read the logical text fie. In Host Language Interface access, the
result can also be in the logical text string.

2. System Architecture

RTI_BC_traverse

3. System Data Structures

1. Input

2. Output

val_list LIST pointer < each entry contains tag and

body of a currently defined boolean.
val_list will be NULL if there is
an error. >

4. System Data Flow

5. System Control Flow

IB_List <-- RTI_BC_traverse

. Design Rationale

Search the Run-time Catalog for indexes, return the tag and body

of each boolean entry found.
Note the actual return value is LIST *, a NULL terminated list

of entries, containing the tag and boolean condition in string format.

7. Test Plan

Test for case where there are no retrieved booleans.

8. Issues

Must return both tags and bodies. Tags alone art; meaningless to the

user.

Routine Name: Pick Index Boolean (IB_Pick0)

Routine Number: 4.1.1.5.2.3

° System Requirements

The 'pick index boolean' command will enable the user to make 'current'
one of the index booleans. If the index boolean does not exist, then an

error message appears in the logical error f'fie. If the chosen boolean
cannot be used to search the current index, an error message appears in

the logical text file.

2. System Architecture

parse

validate

RTI_BC_retrieve

test_compatibility

CWA_I_update(IB_current)

3. System Data Structures

I. Input

tag TAG < identifier for retrieved boolean >

2. Output

IME_OK
IME_BAD_TAG

IME_INCOMPATIBLE
ME_NO_CURRENT

successful picking of boolean
bad tag
boolean not compatible with index
no current index

4. System Data Flow

parse --> validate
validate --> RTI_BC_retrieve

test_compatibility

CWA_I_update

5. System Control Flow

I_Pick <-- parse
validate

RTI_BC__retrieve

test_compatibility
CWA_I_update

. Design Rationale

This routine will make current the specified boolean. First it checks

thatthereis acurrentindexto testcompatibilitywith.Thenit
searchstherun-timebooleancatalogfor thegiw,n tag.
If it is found,testfor thecompatibilityof theb_aleanfor
searchingthecurrentindex(e.g.attributenamesareattributesof
theindex,valuesarein thedomainof valuesfor theindex).

7. Test Plan

Test all error codes.

8. Issues

Routine Name: Modify Index Boolean (IB_modify())

Routine Number: 4.1.1.5.2.4

1. System Requirements

The system will enable the user to modify a index boolean. The user
receives the current index boolean definition in the logical text file

for modifying. The user then alters the definition and the system

replaces the old definition with the new one.

In the Menu access, the default text editor is automatically invoked

to read the logical text file. In Host Language Interface access,
the result can also be in the logical text string.

. System Architecture

form_modify

parse
validate

test_syntax
test__compatibility
RTI_BC_update

(give it the current boolean definition)

3. System Data Structures

1. Input

2. Output

IME_OK
IME_FAILURE

IME_INCOMPATIBLE
IME_BAD_BOOL
IME_NO_CURRENT

success

general error
boolean incompatible with current index

boolean syntactically invalid
no current index to test compatibility against

4. System Data Flow

form_modify --> parse
parse --> validate
validate --> test_syntax

test_compatibility

RTI_BC_update

. System Control Flow

IB_modify <-- form_modify
parse
validate

test_syntax
test_compatibility

.

.

.

RTI_BC_update

Design Rationale

This routine will update the current definition for the current
index boolean. First it will check that there is a current index,

in order to test for compatibility. Next it checks that the user

is not trying to modify the default boolean "TRUE". Then it will check
that the current index boolean exists. The user is given a copy of the
current boolean clef'tuition and is allowed to modify it through
form_modify. The new definition is then tested for syntatic
correcmess and compatibility with the current index. If it is

compatible, then the old definition is replaced with the new one.
If it is not compatible, no change is made.
See Section 4.1.1.5.2.1 for valid syntax of boolean conditions.

Test Plan

Test all error codes.

Issues

This routine will pass to form_modify the current select definition
and receive back the modified select def'mition i.n string format.

Routine Name: Drop Index Boolean (IB_dropO)

Routine Number: 4.1.1.5.2.5

° System Requirements

The system enables the user to delete a index boolean. If the index
boolean does not exist, then an error message appears in the logical

error file.

2. System Architecture

parse
validate

RTI_BC_delete
CWA_I_update0B_current = "TRUE")

(deallocate_WA)
(if dropped is current)

3. System Data Structures

1. Input

tag TAG < tag for index boolean >

2. Output

IME_OK

/ME_FAILURE

IME BAD_TAG

Success

general error
tag specified does not exist

4. System Data Flow

parse --> validate
validate --> RTI_BC_delete

CWA_I_update

5. System Control Flow

IB_drop <-- parse
validate

RTI_BC_delete

CWA_I_update

. Design Rationale

This routine will drop any index boolean that is _,urrently in the CWA.
The user is not allowed to delete the default boolean, so there is a
check to make sure the user is not trying to delete this boolean.
It will then delete the catalog entry for the index boolean. If the
index boolean that was deleted was the current index boolean then the

current index boolean is updated to equal the default index boolean
"TRUE".

7. Test Plan

.

Test all error codes.

Issues

Routine Name: Build Index Select (IS_build0)

Routine Number: 4.1.1.5.3.1

. System Requirements

The system will enable the user to build an index select for
navigating through the index rows. The user rex:eives in the logical
text f'tle an index select form for building such a select. The user

completes the form and submits it. The system assigns the index select
a tag. If an error in building the select is made, then an error is
returned.

In Menu and Command access, the form is input/ouput through the logical
text file. In the Menu access, the default text editor is

automatically invoked to build the form. In Host Language Interface
access, the form can be built through the logical text string.

2. System Architecture

form_new
parse
vafidate

assign_tag
RTI SC insert

3. System Data Structures

1. Input

2. Output

tag TAG tag of the index select created.
NULL if error.

4. System Data Flow

form_new -->

parse -->
validate -->

paise
validate

assign_tag
RTI_SC_insert

5. System Control Flow

IS_build <-- formnew

parse
validate

assign_tag
RTI_SC_insert

. Design Rationale

This routine will build an index select and insert it into the catalog.

7.

8.

The user is given a form to complete defining the index select. This
definition is then parsed into an internal format. A catalog entry
is created and a tag is assigned to the select definition. There is

compatibility check done at this time. That is done at the time the
user 'picks' the index select as current. The tag is returned. If
an error is encountered then NULL is returned.

Test Plan

Issues

This routine receives it's input from the form process that is

spawned. The form process will give this routine's input in
string format.
select_list string < list of the attributes of the select >

It is up to us to parse the string into our internal format.

The characters accepted as part of an attribute
name are A-Z, a-z,. - * (to allow for select *). Any other

character or sequence of characters can be used as a
separator, as long as there are no interspersed spaces.
i.e.

a: b is acceptable. (separator = ":")
a :,# b is acceptable. (separator = ":,#")
a :, b is not acceptable because the separator is ":" and it tries to parse ","

as an attribute name.

a b is acceptable. (separator doesn't exist, but that's ok)

Routine Name: List Index Selects (IS_list0)

Routine Number: 4.1.1.5.3.2

1. System Requirements

The system will enable the user to obtain a list in the logical text
file of the constructed index selects for the index.

In the Menu access the default text editor is automatically invoked to

read the logical text file. In Host Language Interface access,
the result can also be in the logical text string.

2. System Architecture

RTI_SC_traverse

3. System Data Structures

1. Input

2. Output

select_list LIST pointer < array of tag and definitions
NULL if error >

4. System Data Flow

5. System Control Flow

IS_list <-- RTI_SC_traverse

6. Design Rationale

This routine will return a list of tags and definitions for all index

selects currently def'med in the current working area. This information
is retrieved from the index select run-time catalog. If there does

not currently exist any index selects, then NULl_, is returned.The
actual type of what is returned is LIST * (a NULL-terminated list of
index select information).

7. Test Plan

Test the listing of index selects when none are defined, and also
when at least one is defined.

8. Issues

Routine Name: Pick Index Select (IS_pick0)

Routine Number: 4.1.1.5.3.3

° System Requirements

The system will enable the user to make as "cun'ent" one of the index
selects. If the index select does not exist, an error message appears

in the logical error file.

2. System Architecture

paise
validate

test_compatibility
CWA_I_update(IS_current)

3. System Data Structures

1. Input

tag TAG < tag of the index select to pick >

2. Output

nVm_OK
IME_FAILURE
IME_BAD_TAG
IME_INCOMPATIBLE
IME_NO_CURRENT

Success

general error
invalid tag
select to pick is incompatible with current index
no current index Io test compatibility with

4. System Data Flow

parse --> validate
validate --> test_compatibility

CWA_I_update

5. System Control Flow

IS_pick <-- paise
validate

test_compatibility
CWA_I_update

. Design Rationale

This routine will update the current index select. First it checks
that there is a current index to verify compatibility. Next it checks

that the tag given is a valid index select tag, and that the select
currently exists. Next the compatibility is checked against the
current index. The current working area index select variable is

updated.

Test Plan

Test all error codes.

Issues

Routine Name: Modify Index Select (IS_modifyO)

Routine Number: 4.1.1.5.3.4

. System Requirements

The system will enable the user to modify a index select. The user
receives the current index select definition in the logical text file

for modifying. He then alters the definition and the system replaces
the old definition with the new one.

In the Menu access, the default text editor is automatically invoked to

read the logical text file. In Host Language Interface access, the result
can also be in the logical text string.

. System Architecture

form_modify

parse
validate

test_compatibility
RTI_SC_update

(give it the current select definition)

3. System Data Structures

1. Input

2. Output

IME_OK
IME_FAILURE
IME_INCOMPATIBLE
IME_BAD_SF_LECT

success

general error
select definition incompatible with current index
modified definition is syntactically incorrect

4. System Data Flow

form_modify -->

parse -->
validate -->

paise

validate

test_compatibility
RTI_SC_update

5. System Control Flow

IS_modify <-- form_modify

parse
validate

test_compatibility
RTI_SC_update

6. Design Rationale

This routine will update the current definition for the current
index select.

,

.

There is a default index select "*" to select all attributes that the

user is not allowed to modify. First it will check that the current
index select exists, and can be modified. The user is given a copy of
the current select definition and is allowed to modify it through

form modify. The new definition is then tested for validity against
the current index (both syntactically and semantically). If it is

compatible, then the old definition is replaced with the new one. If
it is not compatible, no change is made. See Section 4.1.1.5.3.1 for
def'mition of acceptable select input.

Test Plan

Test all error codes.

Issues

This routine will pass to form_modify the current select definition
and receive back the modified select definition in string format.

Routine Name: Drop Index Select (IS_drop0)

Routine Number: 4.1.1.5.3.5

. System Requirements

The system enables the user to delete an index selecc If the index
select does not exist, then an error message app_mrs in the logical

error file.

2. System Architecture

parse
validate
RTI_SC_delete
CWA_I_update(IS_current = "*") (if dropped is current)

3. System Data Structures

1. Input

tag TAG < tag for index select >

2. Output

IME_OK
IME_FAILURE
I/vIE_BAD_TAG

Success

general error
tag specified doe,; not exist

4. System Data Flow

parse --> validate
validate--> RTI SC delete

CWA__I_update

5. System Control Flow

IS_drop <-- parse
validate

RTI_SC_delete
CWA_I_update

. Design Rationale

This routine will drop any index select that is currently in the CWA.
The user is not allowed to delete the default select, so there is a
check to make sure the user is not trying to delete this select.

It will then delete the catalog entry for the index select. If the
index select that was deleted was the current index select then the

current index select is updated to equal the default index select "*"

If the tag was invalid, an error is returned.

7. Test Plan

.

Test all error codes.

Issues

Routine Name: Bind Column Index (I_bind_column0)

Routine Number: 4.1.1.7.1

° System Requirements

The system will enable the user to bind a program variable with a
column of the index. He provides the name fo the column, a pointer

to the program variable, the type of the variable, and the length
of the program variable. When the database is being navigated, the
system places the column into the program variable.

2. System Architecture

paise
validate

test_compatibility
fiU_I_bind_struct
CWA_I_update(I_binding = TRUE)

3. System Data Structures

1. Input

attribute_name string

variable_ptr string
variable_type string
variable__length int

< name of the attribute to bind >

< pointer to some variable >
< type of variable to bind to >
< length of variable to bind to >

2. Output

IME_OK

IME_FAILURE

IME_NO_CURRENT

IME BAD_ATFR

IME_BAD_TYPE

success

general error
no current index to validate binding
invalid attribute name for current_index

type does not malch attribute in index

4. System Data Flow

parse --> validate
validate --> test_compatibility

fill I bind_struct

CWA_I_update

5. System Control Flow

I_bind_column <-- parse
validate

test_compatibility
fill I bind_struct

CWA_I_update

6. Design Rationale

.

.

This routine will set up for binding tuple values to program variables.

First it verifies that only one column is specified. Then it checks
that the column name given is a valid column name for the current

index, that the variable_type matches the type of the column in the
index. This information is then entered into the binding structure,

and the current working area is updated to reflect that there is

binding for the current index. During navigation, the values of tuples
are copied into the program variables.

Test Plan

Test all error codes.

Issues

The bind column command must be executed after the user has picked

the corresponding index. It is at the time the user defines the bind
(i.e. here) that a compatibility check is done.

Routine Name: Bind Table Index (I_bind_tableO)

Routine Number: 4.1.1.7.2

1. System Requirements

The system will enable the user to bind a set of 1)rogram variables with
a set of columns of the current index. The user makes current the

index. He then provides a pointer to a data structure containing
names of the columns, pointers to the program variables, type of the
variables, and the lengths of the program variables. When the database

is being navigated, the system places the colutrals into the program
variables.

2. System Architecture

paise
validate

test_compatibility
fill_I_bind_struct

CWA_I_update(I_binding = TRUE)

3. System Data Structures

1. Input

bind_info variable_binding pointer

2. Output

IME_OK
IME_FAILURE
IME_NO_CURRENT
IME_BAD_ATTR
IME_BAD_TYPE
IME_BAD_BIND

SUCCESS

general error
no current index to validate binding
invalid column mtme for current_index

type does not mm3ch column in index
other compatibility or syntax errors

4. System Data Flow

parse -->
validate -->

validate

test_compatibility
fill I bind_struct

CWA_I_update

5. System Control Flow

I_bind_table <-- parse

validate

test_compatibility
fill_I_bind_struct
CWA_I_update

6. Design Rationale

.

.

This routine will set up for binding tuple values to program variables.
First it is checked that the column names given are a valid column
names for the current Index, that the variable_types matche the type of
the columns in the index. This information is then entered into the

binding structure, and the current working area is updated to reflect
that there is binding for the current index. During navigation, the

values of tuples are copied into the program variables.

Test Plan

Test all error codes.

Issues

The bind table command must be executed after the user has picked

the corresponding index. It is at the time the user defines the bind
(i.e. here) that a compatibility check is done.

Routine Name: CreateIndexset (ISET_create0)

Routine Number: 3.1.2.1.1

° System Requirements

The create indexset command allows one to create the directory,

databook, catalog, and log devices of the indexset objects.

Example:
create indexset library

directory:
{device = [usr.smith.library]library.datl,
initsize = 4096,
incrsize = 1096,
maxsize = 200000},
databook:

{device = [usr.smith.library]library.datI,
initsize= 4096,

incrsize= 1096,

maxsize = 200000},

catalog:
{device = [usr.smith.library]library.dat 1,
initsize = 4096,
incrsize = 1096,
maxsize = 200000 },

{device = [usr. smith.library]library.dat 1,
initsize = 4096,
incrsize = 1096,
maxsize = 200000 },

log:
{device = [usr. smith.library]library.dat 1,
initsize = 4096,
incrsize = 1096,
rnaxsizc= 200000};

The argument list for the previous example would look like this, where
each COLUMN is one of the arguments: (Note: there can be any number of
"rows" labeled 'databook', but there should be exactly two "rows"

labeled 'catalog', and only one "row" labeled log. The create
command must have no "rows" labeled 'directory').

directory [usr.smith.library]library.datl 4096 1096 200000
databook [usr.smith.library]library.datl 4096 1096 200000
catalog [usr.smith.library]library.datl 4096 1096 200000
catalog [usr.smith.library]library.datl 4096 1096 200000

log [usr.smith.library]library.datl 4096 1096 200000

2. System Architecture

paise

validatc

create catalogs
SOMETHING

SISET_insert

3. System Data Structures

1. Input

iset_name
iset_loc
object_names

device_names

initsizes

incrsizes

maxsizes

string < name of the indexset to create >

string < location of indexset to create >
army of strings

< object names for each element
described in corresponding locations

of other arrays >

array of strings
< device names for each component

of the indexset >

array of integers
< initial sizes for each component

of the indexset >

array of integers
< incremental sizes for each component

of the indexset >

array of integers
< maximum sizes for each component

of the indexset >

NOTE" all of these arrays act as parallel arrays, in that

entry i of each array is related to entry i of

every other array.

2. Output

IMEOK
ME_FAILURE

ISET_create successful

general error

4. System Data Flow

parse --> validate
validate --> create catalogs

SOMETHING
SlSET_insert

SOMETHING --> SISET_insert

5. System Control Flow

ISET_create <-- parse

validate
SOMETHING

RTISET_update
SISET_retrieve
SISET_delete

.

.

SlSET_insert

Design Rationale

This routine will create a new indexset. It will first check that the
indexset to create does not already exists. It will then do SOMETHING,

and create an indexset catalog entry for the indexset.

Test Plan

Test the creation of an existing and nonexistent indexset. Test
errors that relate to SOMETHING.

8. Issues

Routine Name: Drop Indexset (ISET_drop0)

Routine Number: 3.1.8.2

1. System Requirements

The drop indexset command allows one to drop an indexset.

2. System Architecture

parse
validate
for each index in the catalog

I_drop { drop the index }
end loop

remove catalog

for each set in the catalog

S_drop_disk
end loop

remove catalog

SISET_delete

3. System Data Structures

1. Input

iset_name
iset_loc

string
string

< name of indexset to drop >
< location of indexset to drop >

2. Output

IME_OK
IME_FAILURE
IME_DNE

ISET_drop successful

general failure
indexset to drop does not exist

4. System Data Flow

parse -->
validate -->

validate

remove index loop
remove index catalog

remove set loop
remove set cat'dog
SISET_delete

5. System Control Flow

ISET_drop <-- parse
validate

remove index loop

6. Design Rationale

.

remove index catalog
remove set loop

remove set catalog
SISET_delete

.

This routine will check that the indexset to drop exists, and is not
the current indexset. It will then remove each index (and potentially

any associated index_kits), and each set, and then delete the index
and set catalogs belonging to the indexset. Finally it will remove

the system catalog entry.

Note: Cannot drop the current indexser.

Test Plan

Test all error codes.

Issues

Should ISET_drop cascade down to index_kit deletion ...NO!!

Routine Name: Alter Indexset (ISET_alter0)

Routine Number: 3.1.3.2.5

1. System Requirements

The alter indexset command allows one to alter the databook, catalog,

and log devices of the indexset objects. The directory devices cannot
be altered without dropping the indexset.

Example:
alter indexset library
databook:

{device = [usr.smith.library]library.dat 1,
initsize = 4096,
incrsize = 1096,
maxsize = 200000 },

{device -- [usr.smith.library]library.dat2,
initsize = 4096,
incrsize = 1096,
maxsize = 200000 },

catalog:
{device = [usr.smith.library]library.icat,
initsize = 4096,
incrsize = 1096,
maxsize = 200000 },

{device = [usr.smith.library]library.scat,
initsize = 4096,
incrsize = 1096,
maxsize -- 200000 },

log:
{device = [usr.smith.library]library.log,
initsize = 4096,
incrsize = 1096,
maxsize = 200000 };

My guess is that you can only alter the device and initsize if the
object is empty, but you can modify the incrsize anytime, and the
maxsize as long as the current size is less than the proposed maxsize.

The argument list for the previous example would look like this, where
each COLUMN is one of the arguments: (Note: there can be any number of
"rows" labeled 'databook', but there should be no more than two "rows"

labeled 'catalog', and only one "row" labeled 'log'. The alter command
must have no "rows" labeled 'directory').

object names device_name initsize incrsize maxsize

--databook [usr.smith.library]library.datl 4096 1096 200000

databook [usr.smith.library]library.dat2 4096 1096 200000

catalog [usr.smith.library]library.icat 4096 1096 200000
catalog [usr.srnith.library]library.scat 4096 1096 200000
log [usr.smith.library]library.log 4096 1096 200000

2. System Architecture

parse

validate

SOMETHING

RTISET_update
SISET_retrieve
SISET_delete
SISET_insert

/* retrieve the catalog entry */
/* delete the old catalog entry */
/* insert the updated catalog entry */

3. System Data Structures

1. Input

iset_name
iset_loc

object_names

device_names

initsizes

incrsizes

maxsizes

string <
string <
array of strings

<

array of strings
<

name of the indexset to alter >

location of indexset to alter >

object names for each element
described in corresponding locations

of other arrays >

device names for each component
of the indexset >

array of integers
< initial sizes for each component

of the indexset >

array of integers
< incremental sizes for each

component of the indexset >

array of integers
< maximum sizes for each component

of the indexset >

NOTE: all of these arrays act as parallel arrays, in that
entry i of each array is related to entry i of

every other array.

2. Output

IME_OK
IME_FAILURE

ISET_alter successful

general error

4. System Data Flow

parse -->
validate -->

SOMETHING

validate
SOMETHING

RTISET_update
SISET_retrieve
SISET_delete
SISET_insert

--> RTISET_update
SISET_retrieve
SISET_delete

SISET_insert

5. SystemControl Flow

,

.

.

ISET_alter <-- parse
validate
SOMETHING

RTISET_update
SISET_retrieve
SISET_delete
SISET_insert

Design Rationale

This routine will alter the indexset. It will first check that the
indexset to alter already exists. It will then do SOMETHING, and

update the indexset catalog entry for the indexset.

Test Plan

Test the altering of an existing and nonexistent indexset. Test
errors that relate to SOMETHING.

Issues

When altering indexsets, must you respecify E¥'ERYTHING that was

originally specified when the indexset was created? If not, then
how do you know, for example, which databook element they are
implying to alter (for example if you change the name).

Routine Name: Move Indexset (ISET_move0)

Routine Number: 3.1.5.2

. System Requirements

The move indexset command allows one to move an indexset from one

user to another.

2. System Architecture

paise
validate

check_uniqueness
for each index in the index catalog

I_move { not I_move exactly, but move to new location }

for each set in the set catalog
S_move

SISET_retrieve
SISET_delete
SISET_insert

{ not S_move exactly, but move to new location }
{ from old user indexset catalog }
{ from old user indexset catalog }
{ to new user indexset catalog }

3. System Data Structures

1. Input

iset_name
iset__loc_old

iset_Ioc_new

string
string
string

< name of indexset to move >

< user currently owning indexset >
< user to move indexset to >

2. Output

IME_OK
IME_FAILURE
IME_DNE
IME_NONUNIQUE

ISET_move successful

general error
indexset to move does not exist
user to move indexset to already has indexset with

the same name

4. System Data Flow

parse -->
validate -->

validate

check_uniqueness
move index loop
move set loop
SISET_retrieve
SISET_delete
SISET_insert

5. System Control Flow

ISET_move <-- parse
validate

6. Design Rationale

.

check_uniqueness
move index loop
move set loop
SISET_retrieve
SISET_delete
SISET_insert

.

This routine will move an indexset from one user to another. First it
will check that the indexset to move exists. Next, it will check that

the new user does not already have an indexset with the same name.
Then for each index and set in the indexset, it will move them
to the indexset at the new user's location. It will delete the

catalog entry from the old user's system indexset catalog, and insert
a catalog entry into the new user's system indexset catalog.

Test Plan

Test all error codes.

Issues

What should happen with associated index_ldts when indexes are
moved to different users? I think they should move too.

Routine Name: CopyIndexset (ISET_copy0)

Routine Number: 3.1.4.2.1

o System Requirements

The copy indexset command allows the user to make identical copies of
indexsets.

2. System Architecture

[B = copy(A)]

parse

validate

ISET_create(B)

for each index in the index catalog

I_copy(A.index,B.index)

for each set in the set catalog

S_copy(A.set,B.set)

3. System Data Structures

1. Input

iset_name 1

iset_locl
iseLname2
iset_loc2

string
string
string
string

< name of indexset to copy >
< location of indexset to copy >

< name of indexset to copy into >
< location of indexset to copy into >

2. Output

I/VIE_OK
IME_FAILURE
IME_DNE
IME_NONUNIQUE

ISET_copy successful
general error
indexset to copy does not exist
indexset to copy into already exists

4. System Data Flow

parse -->
validate -->

validate

ISET_create

index copy loop
set copy loop

5. System Control Flow

ISET_copy <-- parse
validate

ISET_create

index copy loop
set copy loop

6. Design Rationale

o

This routine will make an identical copy of an indexset. First it
checks that the indexset to copy exists, and that the indexset to

create does not already exist. It then will copy each index from one
indexset to the other. The ISET_create command will get ALL of its

input from the indexset to copy from.

Test Plan

Test all error codes.

8. Issues

Routine Name: Intersect Indexset (ISET_intersect0)

Routine Number: 3.1.4.2.4

, System Requirements

The intersect indexset command allows one to intersect the different

parts of indexsets.

2. System Architecture

[C = A intersect B]

parse

validate

ISET_create(C)

for each index in the index catalog of A

if there is a compatible index in the index catalog of B
I_intersect(A.index,B.index,C.index)

end loop

3. System Data Structures

1. Input

iset_name 1

iset_locl
iset__name2
iset_loc2
iset_name3

iset_loc3

string
string
string
string
string
string

< name of indexset to intersect >
< location of indexset to intersect >
< name of indexset to intersect >
< loc of indexset to intersect >
< name of indexset to intersect into >
< loc of indexset to intersect into >

2. Output

IME_OK
IME_FAILURE
IM _DNE
IME_NONUNIQUE

ISET_intersect successful

general error
indexset to intersect does not exist
indexset to create as result already exists

4. System Data Flow

parse -->
validate -->

validate

ISET_create
intersection loop

5. System Control Flow

ISET_intersect <-- parse
validate
ISET_create

intersection loop

6. Design Rationale

.

This routine will intersect compatible indexes in the two different
indexsets. First it must check that the two indexsets to intersect

actually exist, and that the resulting indexset does not already exist.
Next it will check for pairwise compatible indexes, each from a
different indexset. If any such pairs exist, it will compute the
intersection of them and place the resulting index in the newly
created indexset. A catalog entry is created for the new indexset.

Test Plan

Test all error codes.

8. Issues

Routine Name: Subset Indexsets (ISET_subset0)

Routine Number: 3.1.4.2.2

l. System Requirements

The 'subset indexset' command enables users to make indexsets from

subsets of indexsets.

2. System Architecture

[B = subset(A)]
Parse
Validate

for each index in A

I_subset(A.index, B)

3. System Data Structures

1. Input

indexset_name

sub_indexset_name
select_list

bool_list

suing
string
string

string

< name of result indexset >
< name of indexset to be subsetted >
< attribute names of indexed attrs

to be subsetted >

< string containing boolean condition
to subset according to >

2. Output

IME_OK
IME_FAILURE
IME_NONUNIQUE

IME_BAD_BOOL

successful subset indexset

general failure
non-unique name for new/subsetted indexset
or indexspace
boolean syntax elror

4. System Data Flow

parse --> validate
validate --> I_subset

5. System Control Flow

ISET_subset<-- parse

validate

I_subset

6. Design Rationale

The indexset and indexspace(s) for the result to go into must have

already been created and must have the same indexspace names as the

iset to be subsetted.

7. Test Plan

Test Cases should check for correct handling of invalid names,

bad booleans, bad selects.

8. Issues

Routine Name: SubtractIndexset (ISET_subtract0)

Routine Number: 3.1.4.2.5

. System Requirements

The subtract indexset command allows one to sttbtract the different

parts of indexsets. [Namely the indexes and sets?]

2. System Architecture

[C=A-B]

parse

validate

ISET_create(C)

for each index in the index catalog of A
if there is a compatible index in the index catalog of B

I_subtract(A.index,B.index,C.index)

end loop

3. System Data Structures

1. Input

iset_name 1

iset_locl
iset_name2
iset_loc2
iset_name3
iset_loc3

string
string
string
string
string
string

< name of indexset to subtract >
< location of indexset to subtract >
< name of indexset to subtract >
< loc of indexset to subtract >
< name of indexset to subtract into >
< loc of indexset to subtract into >

2. Output

IME_OK
IME_FAILURE
IME_DNE
IME_NONUNIQUE

ISET_subtract successful

general error
indexset to subtract does not exist

indexset to create as result already exists

4. System Data Flow

parse
validate

--> validate

--> ISET_create

subtraction loop

5. System Control Flow

ISET_subtract <-- parse
validate

ISET_create
subtraction loop

6. Design Rationale

.

This routine will subtract compatible indexes in the two different
indexsets. First it must check that the two indexsets to subtract

actually exist, and that the resulting indexset does not already exist.
Next it wiU check for pairwise compatible indexes, each from a
different indexset. If any such pairs exist, it will compute the
subtraction of them and place the resulting index in the newly
created indexset. A catalog entry is created for the new indexset.

Test Plan

Test all error codes.

8. Issues

Routine Name: Union Indexsets (ISET_union0)

Routine Number: 3.1.4.2.3

o System Requirements

The 'union indexset' command enables users to union the different

parts of indexsets.

2. System Architecture

[C = A union B]

parse

validate

for each pair of compatible indexes in A and B
I_union(A.index,B.index,C.index)

3. System Data Structures

1. Input

resulLindexset string
un_indexset_name 1 string
un_indexseLname2 string

< name of indexset to be created >
< name of indexset to be unioned >
< name of indexset to be unioned >

2. Output

IME_OK
ME_FAILURE

IME_NONUNIQUE
IME_DNE

ISET_union successful

general failure
non-unique name for new indexset or indexspace
indexset to union does not exist

4. System Data Flow

parse -->
validate -->

validate

I_union

5. System Control Flow

ISET_union <-- parse

validate

I_union

. Design Rationale

The result indexset must have already been created, with indexspaces

matching those in indexset 1 being unioned.

For each combination of indexes from indexset_'; 1 and 2, union the

indexes.

7. Test Plan

,

Test Cases should check for correct handling of invalid names.

Issues

If none of the indexes in either indexset are compatible for union,

what should the resulting indexset look like?
--> No indexes in it, but indexspaces matching index set 1 being unioned.

How do we know what indexspace to put the index in?
--> Put it in the one corresponding to the one in index:set 1 (indexes will

have same names, indexspaces but different isets)

What happens when we run out of space in the ispace?

Routine Name: Create Indexspace (ISPACE_create0)

Routine Number: 3.1.2.1.2

1. System Requirements

The create indexspace command allows one to create the databook devices
associated with the indexspace.

Example:
create indexspace library
databook:

{device = [usr.smith.library]library.dat 1,
initsize = 4096,
incrsize = 1096,
maxsize = 200000 },

{device = [usr.smith.library]library.dat2,
initsize = 4096,
incrsize = 1096,
maxsize = 10(g)_};

The argument list for the previous example would look like this, where
each COLUMN is one of the arguments:

device_name initsize incrsize maxsize
...

[u sr. smith.library]library.dat 1 4096 1096 200000

[usr.smith.library]library.dat2 4096 1096 100000

2. System Architecture

parse

validate

SOMETHING

SISET_insert

3. System Data Structures

1. Input

ispace_name
iset_name

iset_loc
device_names

initsizes

incrsizes

maxsizes

string < name of indexspace to create >
string < name of indexset to create indexspace in >
string < location of indexset >
army of strings

< device names for indexset components >

array of integers
< initial sizes for indexset components >

array of integers
< increment sizes for indexset components >

array of integers
< maximum sizes for indexset components >

2. Output

IME_OK

IME_FAILURE

4. System Data Flow

parse --> validate
validate --> SOMETHING

SISET_insert
SOMETHING --> SISET_insert

ISPACE_create successful

general error

5. System Control Flow

ISPACE_create <--

6. Design Rationale

.

parse
validate

SOMETHING

SISET_insert

.

This routine will create the indexspace within art indexset. It will
first check that there does not already exist an indexspace with the
same name in the indexset. It will then do SOlVlETHING, and insert an

entry into the indexset catalog expressing the creation of an

indexspace.

Test Plan

Test all error codes.

Issues

What is this routine supposed to do?

Routine Name: Alter Indexspace (ISPACE_alter0)

Routine Number: 3.1.3.2.4

° System Requirements

The alter indexspace command allows one to alter the databook devices
associated with the indexspace.

Example:
alter indexspace library
databook:
{device = [usr.smith.library]library.dat 1,
initsize = 4096,
incrsize = 1096,
maxsize = 200000 },

{device = [usr.smith.library]library.dat2,
initsize = 4096,
incrsize = 1096,
maxsize = 100000};

The argument list for the previous example would look like this, where
each COLUMN is one of the arguments:

device_name initsize incrsize maxsize
..

[usr.smith.library] library.dat 1 4096 1096 200000
[u sr.smith.library] library.dat2 4096 1096 100000

2. System Architecture

parse
validate

SOMETHING

SlSET_update

3. System Data Structures

1. Input

iseLname

iset_loc
device_names

initsizcs

incrsizes

maxsizes

string < name of the indexset to alter indexspace >

string < location of indexset >
array of strings

< device names for indexset components >

array of integers
< initial sizes for indexset components >

array of integers
< increment sizes for indexset components >

array of integers
< maximum sizes for indexset components >

2. Output

IME_OK
IME_FAILURE

4. System Data Flow

parse --> validate
validate --> SOMETHING

SISET_update
SOMETHING --> SISET_update

5. System Control Flow

ISPACE_aher successful

general error

.

.

.

ISPACE_alter <-- parse
validate
SOMETHING

SlSET_update

Design Rationale

This routine will alter the indexspaces within an indexset. It will

first check that the indexspaces within that inde):set already exist
in order to alter them. It will then do SOMETHING, and update the

indexset catalog entry, updating the indexspace information within
the indexset catalog entry.

Test Plan

Test all error codes.

Issues

What is this routine supposed to do?

Routine Name: Create Index Kit (IK_create0)

Routine Number: 3.1.2.5

1. System Requirements

The 'create indexkit' command allows one to create indexkit objects.

2. System Architecture

paise
validate

SIK_insert

3. System Data Structures

1. Input

indexkit string
kitset string

< name of indexkit to create >
< name of kit_set to contain indexkit >

2. Output

IMEOK
IME_FAILURE
IME_NONU QUE

indexkit creation successful

general error
indexkit with same name already exists in kitset

4. System Data Flow

parse -->
validate -->

validate

SIK_insert

5. System Control Flow

IK_create <-- parse

validate

SIK_insert

6. Design Rationale

This routine will create an empty catalog entry for an indexkit.
This routine will check that an indexkit with the same name does not

already exist in the kitset. The only field that will have any value
is the indexkit name. All other catalog fields are,. changed using the

IK_update command. (See design 3.1.3.5).

7. Test Plan

Test all error codes.

8. Issues

Routine Name: Drop Index Kit (IK_drop0)

Routine Number: 3.1.8.5

1. System Requirements

The 'drop indexkit' command allows one to drop an indexkit.

2. System Architecture

parse
validate

component_update < update the component catalogs if necessary >

SlK_delete

3. System Data Structures

1. Input

indexldt
kitset

string
string

< indexkit to drop >
< kitset containing indexkit >

2. Output

IME_OK
IME_FAILURE
IME_DNE

successful dropping of indexkit
general error
indexkit to drop does not exist

4. System Data Flow

parse -->
validate -->

validate

component_update
SIK_delete

5. System Control Flow

IK_drop <-- parse

validate

Component_update
SIK_delete

6. Design Rationale

This routine will check that the indexkit to drop exists, and if so,

will delete the system catalog entry for the inde_Sdt. Because an
indexkit is just a logical grouping of several physical objects, the
actual objects are not deleted, just the logical grouping. If any of
the components track indexldt associations, then those catalogs

will be updated too.

7. Test Plan

Test nll error codes.

8. Issues

Component catalog changes are currently only raade for indexes.
If the other components' catalog tracks indexkit
associations, that code needs to be added.

Routine Name: Move Index Kit (IK_move0)

Routine Number: 3.1.5.5

° System Requirements

The 'move indexkit' command allows one to move an indexkit from

one kitset to another.

2. System Architecture

parse
validate

check_uniqueness

SIK_retrieve
SIK_delete
SIK_insert

< update both kitset catalogs >

3. System Data Structures

1. Input

indexldt

kitset__old
kitset_new

string
string
string

< name of indexkit to move >
< name of kitset to move from >
< name of kitset to move to >

2. Output

IME_OK

IME FAILURE
IME_DNE
IME_NONUNIQUE

move indexkit successful

general error
indexkit does not exist
kitset to move to already has indexldt w/same name.

4. System Data Flow

parse -->
validate -->

validate

check_uniqueness
SIK_retrieve
SIK_delete
SIK_insert

5. System Control Flow

IK_move --> parse

validate

check_uniqueness
SIK_retrieve
SIK_delete
SIK_insert

6. Design Rationale

.

This routine will move an indexkit from one kitset to another.
This routine will check that the indexkit to move does in fact exist.
This routine will check that the new kitset to move the indexkit to

does not already have an indexkit with the same name. If it does
not, it will move the indexkit flies to the new kitset, and update
the catalogs so that the indexkit catalog entry is in the new kitset

catalog. It will also need to update the components catalog entries,

if they track indexkit associations.

Test Plan

Test all error codes.

8. Issues

Routine Name: UpdateIndexKit (IK_update0)

Routine Number: 3.1.3.5

. System Requirements

The 'update indexkit' command enables users to update

any of the components of the indexkit individually.

2. System Architecture

parse
validate

update component catalog
update system catalog for indexkits

3. System Data Structures

1. Input

kitset

indexkit

component
comp_name
comp_set

string
string

string
string
string

< name of kitset for kit >
< name of the kit to be altered >

< name of the component to update >
< new component value >
< name of the component-set >

2. Output

IME_OK
IME_FAILURE
IME_DNE

< successful update >

< general failure >
< indexkit, kitset, or component non-existent >

4. System Data Flow

parse -->
validate -->

validate

update_comp_cat
SIKC_update

5. System Control Flow

IK_update <-- parse
validate

update_comp_cat
SIKC_update

6. Design Rationale

This routine provides a means for associating a component with an
indexkit. The name and set for the component is given and the

Indexkit is updated by making calls to update the right catalogs.

Issuing this command more than once will result in changing the
component from what it was before to the new value.

7. Test Plan

.

Test for invalid component, set, and kit names.

Issues

Unique identifier for an indexkit is the kimame _uad the kitset-name.

Currently, this routine will update the system catalog for indexkits,
for all component changes, but it will only change the component's

catalog for indexes. If the other components' catalog tracks indexkit
associations, that code needs to be added.

There is currently no check to make sure that the component name that

a component is being updated to actually exists.
The index component checks for existence by default, because it must
exist in order to update the index component's catalog entry.

Routine Name: Copy Index Kit (IK_copy0)

Routine Number: 3.1.4.5.1

° System Requirements

The 'copy indexkit' command allows one to make identical copies of
indexkits.

2. System Architecture

[B = copy(A)]

paise

validate

IK_create(B)
MAN_copy(A.intro,B.intro)

IK_update(B.intro)
I_copy(A.index,B.index)
IK_update(B.index)
DBC_copy(A.dict, B.dict)
IK_update(B.dict)
BK_copy(A.thes,B.thes)
IK_update(B.thes)

3. System Data Structures

1. Input

indexkitl
kitsetl
indexkit2
kitset2

string
string
string
string

< name of indexkit to copy >
< kitset containing 'indexkitl' >
< name of indexkit to create copy into >
< kitset to contain new indextdt >

2. Output

IME_OK
IME_FAILURE
IME_DNE
IMZ_NONUNIQtYZ

successful copy of indexkit

general error
'indexkitl' does not exist

'indexkit2' already exists

4. System Data Flow

parse -->
validate -->

validate

IK_create

MAN_copy
IK_update
I_copy
IK_update
DBC_copy
IK_update
BK_copy

IK_update

5. SystemControl Flow

IK_copy <--

6. Design Rationale

.

parse
validate

IK_create

MAN_copy
IK_update
I_copy
IK_update
DBC_copy

IK_update
BK_copy
IK_update

.

This routine will create an identical copy of an indexkit. First it
will check that the indexkit to copy does in fact exist, and then it
will check that the indexkit to create does not aheady exist. It

will try to create the new indexkit. Then the inn-oduction, index,
dictionary, and thesaurus components of the indexldt are copied, and
a catalog entry in the indexldt is created.

Test Plan

Test all error codes.

Issues

The objects that result from copying the different components
of the indexkit are automatically placed in the 'set' associated

with the ftrst kifs components.

Routine Name: Intersect Index Kit (IK_intersect0)

Routine Number: 3.1.4.5.4

1. System Requirements

The 'intersect indexkit' command allows one to intersect the different

parts of indexkits.

2. System Architecture

[C = A intersect B]

paise
validate

IK_create(C)

MAN_intersect(A.intro, B.intro, C.intro)

IK_update(C.intro)
I_intersect(A.index, B.index, C.index)

IK_update(C.index)
DBC_intersect(A.dict, B.dict, C.dict)

IK_update(C.dict)
BK_intersect(A.thes, B.thes, C.thes)

IK_update(C.thes)

< manuscript intersection >

< index intersection >

< database intersection >

< book intersection >

3. System Data Structures

1. Input

indexkitl
kitsetl
indexkit2
kitset2
indexkit3
kitset3

string
string
string
string
string
string

< name of indexkit to intersect >

< kitset containing 'indexkitl' >
< name of indexkit to intersect >

< kitset containing 'indexkit2' >
< name of indexkit to contain result >
< kitset to contain 'indexkit3' >

2. Output

IME_OK
IME_FAILURE
IME_DNE
IME_NONUNIQUE

successful intersection

general error
'indexkitl' or 'indexkit2' does not exist

'indexkit3' already exists

4. System Data Flow

parse -->
validate -->

validate

IK_create
MAN_intersect

IK_update
I_intersect

IK_update

DBC_intersect
[K_update
BK_intersect
[K_update

5. System Control Flow

[K_intersect <--

6. Design Rationale

.

parse

validate

[K_create
MAN_intersect

[K_update
I_intersect

[K_update
DBC_intersect

[K_update
BK_intersect

[K_update

.

This routine will make sure that the indexkit to create as the result

does not already exist, and that the two indexldts to intersect do
already exist. It will then create the new indexkit, and then proceed
to intersect corresponding parts of each indexkit.

Test Plan

Test all error codes.

Issues

The objects that result from intersecting the different components
of the indexkits are automatically placed in the 'set' associated

with the In'st kit's components.

Routine Name: SubsetIndexKit (IK_subset())

Routine Number: 3.1.4.5.2

. System Requirements

The 'subset indexkit' command enables users to make indexkits from

subsets of indexldts.

2. System Architecture

[B = subset(A)]

paise
validate

IK_create(B)

MAN_subset(A.intro,B.intro)

IK_update(B.intro)

I_subset(A.index,B.index)

IK_update(B.index)

DBC_subset(A.dict,B.dict)

IK_update(B.dict)

BK_subset(A.thes,B.thes)

IK_update(B.thes)

3. System Data Structures

1. Input

indexkitl
kitsetl
indexkit2
kitset2

bool_cond

string
string
string
string
string

< name of indexkit to be subsetted >

< kitset containing 'indexkitl' >
< name of resulting indexkit >
< kitset to contain 'indexkit2' >
< boolean condition for subset >

2. Output

IME_OK
IME_FAILURE
IME_NONUNIQUE

IME_DNE

successful creation of subset indexkit

general failure
'indexkit2' already exists
'indexkitl' does not exist

4. System Data Flow

parse -->
validate -->

validate

IK_create
MAN_subset

IK_update

I_subset

IK_update
DBC subset

IK_update
BK_subset

IK_update

5. System Control Flow

IK_subset <--

6. Design Rationale

.

parse
validate

IK_create
MAN_subset

IK_update
I_subset

IK_update
DBC_subset

IK_update
BK_subset

IK_update

.

A new indexldt is created. Objects for the new kit are created by

subsetting the objects of the original indexkit according to the
boolean condition.
The new indexldt is updated so that these newly created kit objects are
associated with it.

Test Plan

Test all error codes.

Issues

The objects created by subsetting the different components of the
indexkits belong to the 'sets' associated with the, component

being subsetted.

Routine Name: SubtractIndexKit (IK_subtract0)

Routine Number: 3.1.4.5.5

. System Requirements

! ° • 1 I _t !The subtract maexra command allows one to :;ubtract the different

parts of indexkits.

2. System Architecture

[C=A-B]

parse
validate

[K create(C)

MAN_subtract(A.man, B.man, C.man)
I subtract(A.index, B.index, C.index)
I)BC_subtract(A.dict, B.dict, C.dict)

BK_subtract(A.thes, B.thes, C.thes)

< manuscript subtraction • intro >
< index subtraction • index >
< db cluster subtraction • dict >
< book subtraction • thesaurus >

3. System Data Structures

1. Input

indexkit
kitsetl
indexkit
kitset2
indexkit
kitset3

string
string
string
string
string
string

< name of indexkit to subtract >

< kitset containing 'indexkitl' >
< name of indexk.it to subtract >

< kitset containing 'indexkit2' >
< name of indexkit to be result >
< kitset to contain 'indexkit3' >

2. Output

IME_OK
IME_FAILURE
IME_DNE
IME_NONUNIQUE

successful indexk'it subtraction

gener_ error
'indexkitl' or 'indexkit2' does not exist

'indexkit3' already exists

4. System Data Flow

parse -->
validate -->

validate

[K_create
MAN_subtract

[K_update
I_subtract

[K_update
DBC_subtract

[K_update
BK_subtract

[K_update

5. System Control Flow

IK_subtract <--parse
validate

[K_create
MAN_subtract

IK_update
l_subtract

IK_update
DBC_subtract

[K_update
BK_subtract
[K_update

6. Design Rationale

.

This routine will subtract all components of an indexkit. This

routine will check that the indexkit to create does not already exist.
This routine will check that the two indexkits to subtract do

actually exist, and if so, will subtract corresponding parts of each
indexldt, placing the result in the newly created indexkit.

Test Plan

Test all error codes.

8. Issues

Routine Name: Union Index Kit (IK_union0)

Routine Number: 3.1.4.5.3

1. System Requirements

The 'union indexkit' command enables users to union the different

parts of indexkits.

2. System Architecture

[C = A intersect B]

parse
validate

IK_create(C)

MAN_union(A.intro,B.intro,C.intro)

IK_update(C.intro)

I_union(A.index,B.index,C.index)
IK_update(C.index)

DBC_union(A.dict,B.dict,C.dict)
IK_update(C.dict)

BK_union(A.thes,B.thes,C.thes)
IK_update(C.thes)

3. System Data Structures

1. Input

indexkitl
kitsetl
indexkit2
kitset2
indexkit3
kitset3

string
string
string
string
string
string

< name of indexkit to be unioned >

< kitset containing 'indexkitl' >
< name of indexkit to be unioned >

< kitset containing 'indexkit2' >
< name of resulting indexkit >
< kitset to contain 'indexkit3' >

2. Output

IME_OK

IME_FAILURE
IM _NONUNIQUE
IME_DNE

successful creatien of union indexkit

general failure
'indexkit3' already exists
'indexkitl' or 'indexkit2' does not exist

4. System Data Flow

parse -->
validate -->

v_idate

IK_create
MAN_union

[K_update
I_union

[K_update
DBC_union

[K_update
BK_union

[K_update

5. System Control Flow

IK_union <--

6. Design Rationale

.

pal'se

validate

IK_create
MAN_union

[K_update
I_union

[K_update
DBC_union

[K_update
BK_update
[K_update

.

Create a new indexkit. Create each of the elements in the index kit by

unioning the two objects in the original kits. Use update to associate
the new elements with the new indexldt.

Test Plan

Test cases should check for correct handling of invalid names.

Issues

The objects that result from unioning the different components
of the indexkits are automatically placed in the 'set' associated

with the first kit's components.

Advanced Communications Technology Inc.

Part III: User's Guide

SBIR Phase H-Final Report User's Guide

AdvancedCommunicationsTechnologyInc.

Although all commands and operations described in Part I of this report were designed, only a subset was

implemented. Table E lists the operations that were implemented both at the Host Language Interface and at

the Command Language Interface. In the rest of this section we give the User's Guide for the Command

Language Interface.

Table E: UIMS Commands

Index Management Commands

create index drop index insert index copy index

update index move index delete index search index

Index Browsing Commands

retrieve index pick index save index

return index list indexes

Index Navigation Commands

first in index next in index fetch using index

last in index previous in index

build index boolean list index booleans pick index boolean

modify index boolean drop index boolean

Index Run-Time Environment Commands

create column binding create row binding

drop column binding drop row binding

Indexset Management Commands

create indexset drop indexset

SBIR Phase H.Final Report User's Guide

Indexes

In this section, we discuss the use of the indexes commands.

1. Creating Index Objects

We specify how to create indexsets and indexes.

1.1. Creating Indexsets
The create indexset command allows one to create the directory databook, catalogue

and log devices of the indexset objects. The format of the command is shown in Figure

la. Figure lb contains requests to create indexsets nssdca.smith.library and

ipac.smith.library.

create indexset <indexset_name>

Figure la: Creating indexsets

I create indexset nssdca.smith.library [create indexset ipac.smith.library

Figure lb: Creating indexsets

1.2. Creating Indexes
The create index command allows one to create index objects within indexsets. The

format of the command is shown in Figure 2a. "type" can be one of "btree, heap, rtree",

while schema is a file containing the information about the attributes of the index, and

is a file with the following structure

attributel_name type length

attribute2_name type length

attribute3_name type length

"type" can be one of string, int and float. Figure 2b contains requests to create indexes

subject, grid and grid-time within indexset nssdca.smith.smith.

create index <index name> <indexset> <type> <schema>

Figure 2a: Creating indexes

create subject nssdca.smith.library btree btree.schema
create grid nssdca.smith.library rtree 2rtree.schema

create grid-time nssdca.smith.library rtree lrtree.schema

Figure 2b: Creating indexes

where the schema files are respectively

btree.schema:
subject string 20
pointer int 4

2rtree.schema:
Ion1 real 8
latl real 8
Ion1 real 8
lat2 real 8
pointer int 4

I rtree.schema:
time1 real 8
time2 real 8
pointer int 4

2. Deleting Index Objects

We specify how to delete indexsets and indexes.

2.1. Deleting Indexsets
The delete indexset command allows one to delete the indexset objects. The format

of the command is shown in Figure 3a. Figure 3b contains requests to delete indexsets

nssdca, smith, library and ipac.smith, library,

delete indexset <indexset_name>

Figure 3a: Deleting indexsets

delete indexset nssdca.smith.library

delete indexset ipac.smith.library

Figure 3b: Deleting indexsets

2.2. Deleting Indexes
The dlete index command allows one to delete index objects from indexsets. The
format of the command is shown in Figure 4a. Figure 4b contains requests to create

indexes subject, and grid within indexset nssdca.smith.smith.

I drop index <index_name> <indexset> I

Figure 4a: Deleting indexes

drop subject nssdca.smith.library

drop grid nssdca.smith.library

Figure 4b: Deleting indexes

3. Modifying Index Objects
The update, insert and delete index commands allow one to modify indexes. The
format of the commands is shown in Figure 3a. "update" updates the current row with
the values in "row". "insert" inserts a new row with values in "row" after the current row,
while "delete" deletes the current row. Figure 3b contains requests to modify index

subject within indexset nssdca.smith.smith.

update index <row>
insert into index <row>

delete from index

Figure 5a: Modifying indexes

first open and make the index current

update index subjectlNew TitlelPointer1101

insert into index subjectlLast TitlelPointer1104
delete from index

Figure 5b: Modifying indexes

4. Reproducing Index Objects

We specify how to reproduce indexes. The reproducing commands copy and move

allow one to reproduce information about one index into another index.

4.1. Copying Indexes

The copy command allows one to make identical copies of indexes. The format of the

command is shown in Figure 6a. Figure 6b contains requests to copy the subject index

from indexset nssdca.smith.library onto another index "newsubject" within the indexset

ipac.smith, library.

copy index <index_name1> <indexsetl> <index_name2> <indexset2>

Figure 6a: Copying Indexes

I copy index subject nssdca.smith.library newsubject ipac.smith.library

Figure 6b: Copying Indexes

4.2. Moving Indexes
The move command allows one to one index from one indexset to another, or within an

indexset to a different name. The format of the command is shown in Figure 7a. Figure

7b contains requests to move the subject index from indexset nssdca.smith.library into
another index "newsubject" within the indexset ipac.smith.library.

move index <index_name1> <indexsetl> <index_name2> <indexset2> I

Figure 7a: Copying Indexes

move index subject nssdca.smith.library newsubject ipac.smith.library

Figure 7b: Copying Indexes

5. Searching Index Objects
We specify how to navigate through and search indexes. The navigation commands

first, next, previous, last, allow one to position the cursor to the elements of an index.
The command fetch allows one to bring in a record. Indexes are retrieved, in the

beginning, then saved (if they have been modified), and finally returned. The
commands pick and list allow one to make an index current and check which indexes

are opened respectively.

5.1. Opening Indexes
The retrieve command allows one to open an index. The format of the command is

shown in Figure 8a. "mode" can be one of"read-only" and "modify". "tag" is a unique
identifier that the user supplies; if not present the system generates one. Figure 8b

contains requests to retrieve the subject and the grid index from indexset

nssdca.smith, library.

retrieve index <index_name1> <indexsetl> <mode> [<tag>] I

Figure 8a: Retrieving Indexes

retrieve index subject nssdca.smith.library read-only

retrieve index grid nssdca smith library modify t2

Figure 8b: Retrieving Indexes

5.2. Listing Retrieved Indexes

The list command allows one to list the opened indexes and see their tags. The format

of the command is shown in Figure 9a. It has no arguments. Figure 9b shows the

output of the command.

list index

Figure 9a: Listing Indexes

INDEX: nssdca.smith librarylsubject tl

INDEX: nssdca.smith library/grid t2

Figure 9b: Listing Indexes

5.3. Picking Indexes

The pick command allows one to pick an opened index and make it current. The format

of the command is shown in Figure 10a. "tag" is a unique identifier that the user

supplies. Figure 10b contains a request to pick the subject index from indexset

nssdca, smith, library.

I pick index <tag> I

Figure lOa: Picking Indexes

pick index tl I

Figure lOb: Picking Indexes

5.4. Saving Indexes
The save command allows one to save permanently an opened and modified index.

The format of the command is shown in Figure 1 la. "tag" is a unique identifier that the

user supplies. Figure 11b shows how to save the subject index in indexset

n ssd ca. smith, library.

I save index <tag> I

Figure 11a: Picking Indexes

save index tl [

Figure 11b: Picking Indexes

5.4. Returning Indexes
The return command allows one to close an opened index. The format of the command

is shown in Figure 12ao "tag" is a unique identifier that the user supplies. Figure 12b

shows how to close the subject index from the indexset nssdca.smith.library.

I return index <tag> I

Figure 12a: Returning Indexes

return index tl I

Figure 12b: Returning Indexes

5.5. Positioning within Indexes
The navigation commands first, next, previous, last, allow one to position the cursor
to the elements of an index. These can be executed after an index has been picked to
be the current one and a boolean for the search has been defined (if no such boolean

has been defined it is assumed that one want to navigate through all of the elements).

The command fetch allows one to bring in a record.
The format of the commands is shown in Figure 13a. "tag" is a unique identifier that

the user supplies. Figure 13b shows how to navigate and get records from the subject
index from the indexset nssdca.smith.library.

first in index
next in index

previous in index
last in index

fetch from index

Figure 13a: Navigating Through Indexes

open subject index and
pick it to be the current one; then

first in index
fetch from index

next in index
fetch from index
fetch from index

last in index
fetch from index

previous in index

Figure 13b: Navigating Through Indexes

6. Manipulating Booleans

We specify how to define booleans and use them for searching through indexes.

6.1. Building Booleans
The build boolean command allows one to define booleans and use them for

searching through indexes. The format of the command is shown in Figure 14a

"expression" is a boolean expression and "tag" is a unique identifier that the user

supplies; if not present the system generates one. Figure 14b contains requests to
build two booleans.

build boolean <expression> [<tag>]

Figure 14a: Building Booleans

build boolean subject="New Title"
build boolean latl =15 b2

Figure 14b: Building Booleans

6.2. Listing Booleans
The list boolean command allows one to list the defined indexes and see their tags.

The format of the command is shown in Figure 15a. It has no arguments. Figure 15b

shows the output of the command.

I list boolean

Figure 15a: Listing Booleans

I BOOLEAN: subject="New Title" bl IBOOLEAN: lat1=15 b2

Figure 15b: Listing Booleans

6.3. Picking Booleans

The pick boolean command allows one to pick a previously defined boolean and make
it current. The format of the command is shown in Figure 16a. "tag" is a unique

identifier that the user supplies. Figure 16b contains a request to pick the subject
boolean.

pick boolean <tag>

Figure 16a: Picking Booleans

I pick boolean bl

Figure 16b: Picking Booleans

6.4. Modifying Booleans

The modify boolean command allows one to change the expression of a defined

boolean. The format of the command is shown in Figure 17a Figure 17b shows how to

modify a previously defined boolean.

modify boolean <new_expression>

Figure 18a: Modifying Booleans

modify boolean subject="Second Title"

modify boolean lat1=20

Figure 18b: Modifying Booleans

6.5. Droping Booleans

The drop boolean command allows one to drop a previously defined boolean. The
format of the command is shown in Figure 19a. "tag" is a unique identifier that the user

supplies. Figure 19b shows how to drop the boolean defined on "subject".

I drop boolean <tag> I

Figure 19a: Droping Booleans

I drop boolean bl I

Figure 19b: Droping Booleans

Advanced Communications Technology Inc.

Part IV: Reference Manual

SBIR Phase H-Final Report Reference Manual

AdvancedCommunicationsTechnologyInc.

Although all commands and operations described in Part I of this report were designed, only a subset was

implemented. Table E (repeated from Part III) lists the operations that were implemented both at the Host

Language Interface and at the Command Language Interface. In the rest of this section we give the Reference

Manual for both Interfaces.

Table E: UIMS Commands

Index Management Commands

create index drop index insert index copy index

update index move index delete index search index

Index Browsing Commands

retrieve index pick index save index

return index list indexes

Index Navigation Commands

first in index next in index fetch using index

last in index previous in index

build index boolean list index booleans pick index boolean

modify index boolean drop index boolean

Index Run-Time Environment Commands

create column binding create row binding

drop column binding drop row binding

Indexset Management Commands

create indexset drop indexset

SBIR Phase H-Final Report Reference Manual

Host Language Interface

SBIR Phase II-Final Report Reference Manual-Host Language Interface

Advanced Communications Technology ISET_create

Function Name:

ISET_create

Purpose:

To create an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: char *indexset The name of the indexset

Description:

To create an indexset
ISET create(indexset)

Errors:

If there is an existing indexset with the same name

Examples:

ISET_create("iueobs");

See Also:

Advanced Communications Technology ISET_delete

Function Name:

ISET_delete

Purpose:

To delete an inclexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: char *indexset The name of the indexset

Description:

To delete an indexset
ISET delete(indexset)

Errors:

If there is no indexset with the given name

Examples:

ISET_delete("iueobs");

See Also:

Advanced Communications Technology I_create

Function Name:

I create

Purpose:

To create an index in an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *indexname The name of the source index
IN: char *indexset The name of source parent indexset
IN: FORMAT *mode The type of the new index (heap, hash, b-tree, r-tree)
IN: A'I-rR_DESC **attr_info An array indicating the structure of the index attributes

Description:

To create an index
I create(wa, indexname, indexset, mode, attr_info)

Errors:

If there is no such indexset, or attribute information is incorrect

Examples:

WA *wa /* work area definitions */

ATTR DESC **attr info; /* attribute information structure */

WA_open ("nick r, ccc",wa)"

Fill_inattr_info (att r_info) ;

I create(wa, "objclass", "iueobs", "b-tree", attr info);

See Also:

Advanced Communications Technology l_drop

Function Name:

I_drop

Purpose:

To drop an index from an inclexset

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: char *indexname The name of the source index
IN: char *indexset The name of source parent indexset

Description:

To drop an index
I_drop (indexname, indexset)

Errors:

If there is no such index, or such indexset.

Examples:

I_drop("objclass", "iucobs");

See Also:

Advanced Communications Technology I_insert

Function Name:

I_insert

Purpose:

To insert a row into the current index of an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

WA *wa A pointer to a work area
IN: char *buffer The buffer area holding the row to be inserted

Description:

To insert into an index:

I insert(wa, buffer)

Errors:

If the current index is not open for modify. The type of the data is inconsistent with
the defintion.

Examples:

+ WA *wa /* work area definitions */

TAG *tagl ;

BUFFER *buffr;

. . o

WA_open ("nick r", "ccc",wa) ;

I retrieve(wa, "objclass", "iueobs", 2, tagl);

I_pick (wa, tagl);

se_p_row(buffr) ; /* sets the values of the columns */

I first (wa) ;

I next (wa) ;

I insert(wa, buffer) ;

I save (wa) ;

I return (wa) ;

WA close (wa) ;

See Also:

Advanced Communications Technology I_update

Function Name:

I_update

Purpose:

To update the current row of the current index of an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *row The new row to replace the existing one

Description:

To update current row of the current index:
I_update(wa, row)

Errors:

If the current index is not open for modify. The type of the data is inconsistent with
the defintion.

Examples:

Suppose "objclass" is an index with two columns, "class" and "id', and we want to
replace the second row of this index with the row (LWR,15)

WA *wa /* work area definitions */

. . ,

TAG *tagl ;

BUFFER *buffrl;

WA_open ("nick r", "ccc", wa);

I retrieve(wa, "objclass", "iueobs",

I_pick (wa, *tagl);

in3ert_to_buffer(bu f f r i, "LWR", 15) ;

I first (wa) ;

I next (wa) ;

I_update(wa, buffrl) ;

I save (wa) ;

I return(wa, *tagl) ;

i, tagl);

See Also:

Advanced Communications Technology I_move

Function Name:

I move

Purpose:
To move an index from an indexset into another index

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *indexnamel The name of the source index
IN: char *indexsetl The name of source parent indexset
IN: char *indexname2 The name of the destination index
IN: char *indexset2 The name of destination parent indexset

Description:

To move an index

I move (wa, indexnamel, indexsetl, indexname2,

Errors:

Ifthere isno such source index,orsuch source indexset.

Examples:

WA *wa /* work area definitions */

WA open ("nick r ccc",wa) ;
-- #

I move(wa, "objclass", "iueobs", "objclass",

See Also:

indexset2)

"newiueobs") ;

Advanced Communications Technology I_delete

Function Name:

I_delete

Purpose:

To delete current row of the current index of an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

Description:

To delete current row from the current index:

I delete (wa)

Errors:

If the current index is not open for modify.

Examples:

WA *wa /* work area definitions */

TAG *tagl ;

BUFFER *buffr;

VAR *classbuf ;

WA open ("nick r ccc",wa) ;
m

I_retrieve(wa, "objclass", "iueobs", i, tagl);

I_crbind(wa, tagl, buffr) ;

I_ccbind(wa, tagl, "class", clasbuf);

I pick (wa, tagl);

I first (wa) ;

I fetch (wa) ;

I next (wa) ;

I fetch (wa) ;

I delete (wa) ;

I dcbind(wa, tagl, "class", clasbuf);

See Also:

Advanced Communications Technology I_copy

Function Name:

I__copy

Purpose:

To copy an index from an indexset into another index

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *indexnamel The name of the source index
IN: char *indexsetl The name of source parent indexset
IN: char *indexname2 The name of the destination index
IN: char *indexset2 The name of destination parent indexset
IN: FORMAT *mode The type of the new index (heap, hash, b-tree, r-tree)

Description:

To copy an index
I_copy(wa, indexnamel, indexsetl, indexname2,

Errors:

If there is no such source index, or such source indexset.

Examples:

WA *wa /* work area definitions */

, . °

TAG *tagl, *tag2;

WA open ("nick r" "ccc",wa) ;
-- t

I_copy (wa, "objclass", "iueobs",

tree") ;

"objclassl",

indexset2, mode)

"newiue obs" , "b-

See Also:

Advanced Communications Technology l_search

Function Name:

I search

Purpose:

To search the current index of an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: IN: WA *wa A pointer to a work area
IN: FILE *infile Name of file containing terms
IN/OUT: FILE *outfile Name of file containing pointers
IN/OUT: FILE *pairfile Name of file containing term-pointer pairs
IN/OUT: FILE *statfile Name of file containing statistics

Description:

To search an index:
I search(wa, infile, outfile, pairfile, statfile)

Errors:

If there is no current index. If there is no input or output file.

Examples:

WA *wa /* work area definitions */

TAG *tagl;

WA_open ("nick r", "ccc",wa);

I retrieve(wa, "objclass", "iueobs", I, tagl);

I_pick (wa, *tagl);

I search(wa, "windows", "output", "pairs", "stats");

For example, the contents of file "windows" may be:
99

24

Then, the contents of file "output" might be:
LWP2346

LWP2347

while the contents of file "pairs" will be:
99 LWP2346

24 LWP2347

The contents offile"stats"willbe:

3 records found

See Also:

Advanced Communications Technology l_retrieve

Function Name:

I retrieve
D

Purpose:

To retrieve an index in an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *index Name of the index
IN: char *indexset Name of the indexset
IN: int mode mode of access e.g., read (0) or write (1). Default is read
IN/OUT: TAG *tag Optional tag name (the system generates a tag if none is specified)

Description:

To retrieve an index:

I retrieve(wa, index, indexset, mode, tag)

Errors:

If there is no index. If there is no indexset. If the mode is not correct.

Examples:

See Also:

+ WA *wa /*

o.°

TAG *tagl;

TAG *tag2;

work area definitions */

WA open ("nick r ccc",wa)"
-- t e

I_retrieve(wa, "objclass", "iueobs",

I_retrieve(wa, "objclass", "rectss",

i, tagl);

i, tag2);

Advanced Communications Technology l_pick

Function Name:

I_pick

Purpose:

To pick a index

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: TAG tag The tag of the index

Description:

To pick an index
I_pick(wa, tag)

Errors:

If there is no tag of that name.

Examples:

WA *wa /* work area definitions

oo.

TAG *tagl, *tag2;

WA_open ("nick r", "ccc",wa) ;

I retrieve(wa, "objclass",
o

I retrieve(wa, "objclass",

I_pick (wa, *tagl) ;

I first (wa) ;

process rows

I_pick (wa, *tag2);

I first (wa) ;

process rows

See Also:

./

I W

I,

tagl);

tag2);

Advanced Comm unications Technology I_save

Function Name:

I save

Purpose:

To save an index in an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: TAG tag The tag of the index

Description:

To save an index:

I save(wa, tag)

Errors:

Ifthere isno such tag

Examples:

+ WA *wa /* work area definitions */

ooo

TAG *tagl, *tag2;

WA_open ("nick r", "ccc",wa) ;

I retrieve(wa, "objclass",

I retrieve(wa, "objclass",

update indexes

I save(wa, *tagl) ;

I save(wa, *tag2) ;

I return(wa, *tagl) ;

I return(wa, *tag2) ;

See Also:

i, tagl) ;

0, tag2) ;

Advanced Communications Technology I_return

Function Name:

I return

Purpose:

To return an index in an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: TAG tag The tag of the index

Description:

To return an index:

I return(wa, tag)

Errors:

If there is no such tag

Examples:

See Also:

+ WA *wa /* work area definitions */

.o,

TAG *tagl, *tag2;

WA__open ("nick r",

I retrieve(wa, "objclass",

I retrieve(wa, "objclass",

process indexes

I_return(wa, *gagl);

I return(wa, *tag2};

"CCC", wa) ;

"iueobs",

"rectss",

i, tagl) ;

0, tag2) ;

Advanced Communications Technology l_iist

Function Name:

I_list

Purpose:

To list the retrieved indexes

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN" WA *wa A pointer to a work area

Description:

To list all indexes
I list (wa)

m

Errors:

None.

Examples:

WA *wa /* work area definitions */

° • °

TAG *tagl, *tag2;

WA_open ("nick r", "ccc",wa) ;

I retrieve(wa, "objclass", "iueobs",

I retrieve(wa, "rects", "iueobs", i,

I list (wa) ;

The result is:
INDEX: iueobs/objclass TAG: Ii

INDEX: iueobs/rects TAG: I2

See Also:

i, tagl);

tag2);

Advanced Communications Technology I_first

Function Name:

I_first

Purpose:

To make the first row of the current index current.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

Description:

To get the first row of the current index:
I first (wa)

Errors:

Examples:

See Also:

WA *wa /* work

TAG *tagl;

BUFFER *buff r;

, • •

WA_open ("nick

I retrieve (wa,

I_pick (wa, tagl);

I first (wa) ;

buffr = I fetch(wa);

print_row (bu f f r) ;

area definitions */

r" "ccc", wa) ;f

"objclass", "iueobs", i, tagl);

Advanced Communications Technology I_next

Function Name:

I_next

Purpose:

To make the next row of the current index current.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

Description:

To get the next row of the current index:
I next (wa)

Errors:

Examples:

See Also:

WA *wa /* work area definitions */

WA *wa /* work area definitions */

TAG *tagl ;

BUFFER *buff r;

o * •

WA_open ("nick r",

I retrieve(wa, "objclass",
m

I_pick (wa, tagl) ;

I first (wa) ;

buffr = I fetch(wa);

print_row (buff r) ;

I next (wa) ;

buffr = I fetch(wa) ;

print_row (buff r) ;

"ccc", wa) ;

"iueobs", I, tagl);

Advanced Communications Technology l_fetch

Function Name:

I_fetch

Purpose:

To get the current row of the current index.

Function Module:

uinms.a

Function Type:

pointer to character string (the buffer to hold the row)

Parameters:

IN: WA *wa A pointer to a work area

Description:

To get the current row of the current index:
I fetch (wa)

Errors:

If there is no current row.

Examples:

WA *wa /* work

TAG *tagl ;

BUFFER *buffr;

, . .

WA_open ("nick

I retrieve (wa,

I_pick (wa, tagl);

I first (wa) ;

buffr = I fetch(wa);

prinf_row (bu f f r) ;

I next (wa) ;

buffr = I fetch(wa);

printrow(buffr);

area definitions */

r" "ccc", wa) ;

"objclass", "iueobs", i, tagl);

See Also:

Advanced Communications Technology I_last

Function Name:

I last

Purpose:

To make the last row of the current index current.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

Description:

To get the last row of the current index:
I last (wa)

Errors:

Examples:

See Also:

WA *wa /* work

TAG *tagl ;

BUFFER *buffr;

WA_open ("nick

I retrieve (wa,

I_pick (wa, tagl);

I last (wa) ;

buffr = I fetch(wa) ;

print_row (buff r) ;

area definitions */

r" "ccc", wa) ;t

"objclass", "iueobs", i, tagl);

Advanced Communications Technology I_previous

Function Name:

I_previous

Purpose:

To make the previous row of the current index current.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

Description:

To get the previous row of the current index:
I_previous (wa)

Errors:

Examples:

See Also:

WA *wa /* work

TAG *tagl ;

BUFFER *buffr;

o • o

WA_open ("nick

I_retrieve (wa,

I_pick (wa, *tagl);

I last (wa) ;

buffr = I fetch(wa) ;

print_row (bu f f r);

I_previous (wa) ;

buffr = I fetch(wa);

print_row (buff r) ;

area definitions */

r '| n, "ccc ,wa);

"objclass", "iueobs", i, tagl);

Advanced Communications Technology IB_build

Function Name:

IB_build

Purpose:

To build a boolean for searching an index in an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: BOOL *boolean The boolean

IN/OUT: TAG *tag The tag of the boolean

Description:

To build a boolean for searching an index in an indexset:
IB build (wa, boolean, tag);

Errors:

If there is an incorrectly specified boolean.

Examples:

WA *wa /* work area definitions */

oo.

TAG *tagl;

BUFFER *buffrl;

TAG *tag2;

BUFFER *buffr2;

WA_open ("nick r", "ccc",wa);

I retrieve(wa, "objclass", "iueobs", i, tagl);

I crbind(wa, tagl, buffrl);

To search for the first row of a b-tree index with named objclass in indexset iueobs
satisfying the condition objclass = 99

I_pick (wa, "il");

strcpy(log_txt_str, "objclass=99") ;

IB build (wa, log_txt_str, "bl");

IB_pick(wa, "bl");

I first (wa) ;

I fetch (wa) ;

See Also:

Advanced Communications Technology IB_iist

Function Name:

IB_list

Purpose:

To list the booleans.

Function Module:

uinrns.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN- WA *wa A pointer to a work area

Description:

To list all booleans:
IB list (wa)

Errors:

None.

Examples:

WA *wa /* work area definitions */

*°,

TAG *tagl, *bl, *b2;

BUFFER *log_txt_str;

WA_open ("nick r", "ccc",wa);

I_retrieve(wa, "objclass", "iueobs",

I_pick (wa, tagl);

strcpy(log_txt_str, "objclass=99") ;

IB_build (wa, log_txt_str, bl);

strcpy(log_txt_str, "objclass=101");

IB_build (wa, log_txt_str, b2);

IB list (wa) ;

The result is:

BOOLEAN: objclass=99 TAG: B1

BOOLEAN: objclass=101 TAG: B2

See Also:

1F tagl);

Advanced Communications Technology IB_pick

Function Name:

IB_pick

Purpose:

To pick a boolean.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: TAG tag The tag of the boolean

Description:

To pick a boolean:
IB__pick (wa, tag)

Errors:

If there is no tag of that name.

Examples:

WA *wa /* work area definitions

o..

TAG *tagl, *bl;

BOOL *log_txt_str;

,/

WA_open ("nick r", "ccc",wa);

I retrieve(wa, "objclass", "iueobs",

I_pick (wa, *tagl);

strcpy(log_txt_str, "objclass=99 '');

IB_build (wa, log_txt_str, bl);

IB_.pick(wa, *bl);

I first (wa) ;

See Also:

I, tagl);

Advanced Communications Technology IB_modify

Function Name:

IB_modify

Purpose:

To modify a boolean for searching an index in an indexset.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: BOOL *boolean The boolean expression

Description:

To modify a boolean
IB modify (wa, boolean) ;

Errors:

If there is an incorrectly specified boolean.

Examples:

WA *wa /* work area definitions */

.,°

TAG *tagl;

BOOL *boolean;

char *buffer;

WA open ("nick r ccc" wa)-

I retrieve(wa, "objclass", "iueobs",

I_pick (wa, tagl);

strcpy(boolean, "objclass=99 '');

IB build (wa, boolean, bl);

IB_pick(wa, *bl) ;

I first (wa) ;
m

buffer -- I fetch(wa);

print_row (buffer) ;

strcpy(boolean, "objclass=101 '');

IB_modify(wa, boolean) ;

I first(wa);

buffer = I fetch(wa) ;

print_row (bu f f e r) ;

WA close (wa) ;

i, tagl);

See Also:

Advanced Communications Technology IB_drop

Function Name:

IB_drop

Purpose:

To drop a boolean.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: TAG tag The tag of the boolean

Description:

To drop a boolean:
IB_drop(wa, tag);

Errors:

If there is no such tag

Examples:

WA *wa /* work area definitions

o • °

TAG *tagl, *bl;

BUFFER *buffr;

./

WA open ("nick r" "ccc" wa) ;

I retrieve(wa, "objclass", "iueobs",

I_crbind(wa, tagl, buffr);

I_pick (wa, tagl);

strcpy(log_txt_str, "objclass=99 ");

IB_build (wa, log_txt_str, bl);

IB_pick(wa, *bl) ;

I first (wa) ;

I fetch (wa) ;

print_row (buffr) ;

IB_drop((wa, *bl) ;

I drbind(wa, tagl, buffr);

See Also:

I, tagl);

Advanced Communications Technology I_ccbind

Function Name:

I_ccbind

Purpose:

To bind a column to a buffer area

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *column The column to bind

IN: char *vat The buffer area (variable)
IN: char* vat_type The type of the variable to be used
IN: char *var_len The length of the variable to be used

Description:

To bind a column to a buffer area

I ccbind(wa, column, var, var_type, var_len)

Errors:

If the column does not exist, or space has not been allocated for the buffer area

Examples:

WA *wa /* work

TAG *tagl;

BUFFER *buffr;

VAR *classbuf;

area definitions */

o • °

WA_open ("nick r", "ccc",wa) ;

I retrieve(wa, "objclass", "iueobs", I, tagl);

I_pick (wa, tagl);

I crbind(wa, buffr) ;

I ccbind(wa, "class", clasbuf, "string", 20);

I first (wa) ;

I fetch (wa) ;

I next (wa) ;

I fetch (wa) ;

I delete (wa) ;

I dcbind(wa, "class", classbuf) ;

See Also:

Advanced Communications Technology I_dcbind

Function Name:

I_dcbind

Purpose:

To drop a binding of a column

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *column The column to bind
IN: char *buffer The buffer area

Description:

To drop a binding of a column
I dcbind(wa, column, buffer)

Errors:

If the column does not exist or the binding was never established

Examples:

WA *wa /* work area definitions */

TAG *tagl;

BUFFER *buff r;

VAR *classbuf;

WA_open ("nick r", "ccc",wa);

I_retrieve(wa, "objclass", "iueobs",

I_pick (wa, tagl);

I_crbind(wa, buffr) ;

I_ccbind(wa, "class", clasbuf);

I first (wa) ;

I fetch (wa) ;

I next (wa) ;

I fetch (wa) ;

I delete (wa) ;

I dcbind(wa, "class", classbuf);

I, tagl);

See Also:

Advanced Communications Technology l_crbind

Function Name:

I_crbind

Purpose:

To bind a row to a buffer area

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN/OUT: char *buffer The buffer area

Description:

To bind a row to a buffer area

I_crbind (wa, buffer)

Errors:

If space has not been allocated for the buffer area

Examples:

WA *wa /* work area

TAG *tagl ;

BUFFER *buffr;

VAR *classbuf ;

. . .

WA_open ("nick r",

I retrieve(wa, "objclass",

I pick (wa, tagl);

I crbind(wa, buffr);

I first (wa) ;

I fetch (wa) ;

print_row (buff r) ;

I next (wa) ;

I fetch (wa) ;

print_row (buffr) ;

I delete (wa) ;

I_drbind(wa, buffr) ;

definitions */

"ccc", wa) ;

"iueobs" i,f

See Also:

tagl);

Advanced Communications Technology l_drbind

Function Name:

I drbind
D

Purpose:

To drop the binding of a row

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *buffer The buffer area

Description:

To drop the binding of a row
I drbind(wa, buffer)

Errors:

If the binding was never established

Examples:

WA *wa /* work area definitions

TAG *tagl ;

BUFFER *buff r;

VAR *classbuf;

. • •

WA_open ("nick r", "ccc",wa);

I_pick (wa, tagl);

I_retrieve(wa, "objclass",

I_crbind(wa, buffr) ;

I first (wa) ;

I fetch (wa) ;

print_row (buff r) ;

I next (wa) ;

I fetch (wa) ;

print_row (buff r) ;

I delete (wa) ;

I_drbind(wa, buffr) ;

See Also:

./

"iueobs", i# tagl);

Advanced Communications Technology WA_open

Function Name:

WA_open

Purpose:

To initialize a work area.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: USER *user The name of the user

IN: PASS *pass The password of the user
OUT: WA *wa A pointer to a work area

Description:

To initialize a work area.

WA_open (user, pass, wa) ;

Errors:

If the user, or password is incorrect.

Examples:

WA *wa /* work

. , .

WA__open ("nick

. . o

WA close (wa) ;

area definitions

r", "ccc", wa);

See Also:

,/

Advanced Communications Technology WA_close

Function Name:

WA_close

Purpose:

To close a work area.

Function Module:

uinms.a

Function Type:

integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area (rat)

Description:

To close a work area.
WA close (wa) ;

Errors:

If the work area pointer is incorrect.

Examples:

WA *wa /* work

,°,

WA_open ("nick

oo.

WA close (wa);

area definitions

r", "CCC", wa) ;

See Also:

./

Command Language Interface

SBIR Phase ll-Final Report Reference Manual-Command Language Interface

Advanced Communications Technology create indexset

Command Name:

create indexset

Purpose:

To create an indexset.

Command Module:

uinms.exe

Synopsis:

create indexset <indexset>

Parameters:

indexset- name of parent indexset

Description:

To create an indexset
create indexset <indexset>

Errors:

If there is an existing indexset with the same name

Examples:

create indexset iueobs

See Also:

Advanced Communications Technology delete indexset

Command Name:

delete indexset

Purpose:

To delete an indexset.

Command Module:

uinms.exe

Synopsis:

delete indexset <indexset>

Parameters:

indexset- name of parent indexset

Description:

To delete an indexset
delete indexset <indexset>

Errors:

If there is no existing indexset with name given

Examples:

delete indexset iueobs

See Also:

Advanced Communications Technology create

Command Name:

create

Purpose:

To create an index in an indexset.

Command Module:

uinms.exe

Synopsis:

create index <indexname> <indexset> <mode> <definition_file>

Parameters:

indexname- name of the index

indexset- name of parent indexset
mode- mode of access (e.g., heap, hash, b-tree, r-tree) Default is heap
definition_file- the file containing the schema of the index

Description:

To create an index:
create index <indexname> <indexset> <mode> <definition_file>

Errors:

If there is no indexset. If there is no correct mode. etc.

Examples:

To create a b-tree index with name "objclass" in indexset "iueobs" with definition file

"schema"
create index objclass iueobs b-tree schema

Assuming that the two fields in the index are "name" and "id", the file "schema" will
have the following information

name string 30

id int 4

If we would have liked to create an r-tree index on a set of rectangles, the file

"schema" would contain
attra int 4

attrb int 4

attrc int 4

attrd int 4

id int 4

See Also:

Advanced Communications Technology drop

Command Name:

drop

Purpose:

To drop an index in an indexset.

Command Module:

uinms.exe

Synopsis:

drop index <indexname> <indexset>

Parameters:

indexname- name of the index

indexset- name of parent indexset

Description:

To drop an index:
drop index <indexname> <indexset>

Errors:

If there is no such index, or such indexset

Examples:

To drop an index with name "objclass" in indexset "iueobs"
drop index objclass iueobs

See Also:

Advanced Communications Technology insert

Command Name:

insert

Purpose:

To insert a row into the current index of an indexset.

Command Module:

uinms,exe

Synopsis:

insert into index <row>

Parameters:

row- the row to be inserted

Description:

To insert into an index:
insert into index <row>

Errors:

If the current index is not open for modify. The type of the data is inconsistent with
the defintion.

be inserted using the symbol 'T'

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2

To insert into a b-tree index with name objclass in indexset iueobs with format:
objclass integer

cam string 9

we do the following:
pick il

insert into index objclassl991can_LWP2344

To insert into an r-tree index with name rects in indexset iueobs with format:

ral integer 4

decl integer 4

ra2 integer 4

dec2 integer 4

cam string 9

we do the following:
pick i2

insert into index ralI23441decl1373841ra21394941dec21233991ca_LWP2346

See Also:

Advanced Communications Technology update

Command Name:

update

Purpose:

To update current row of the current index of an indexset.

Command Module:

uinms.exe

Synopsis:

update index <row>

Parameters:

row- the row to be updateed

Description:

To update current row of the current index:
update index <row>

Errors:

If the current index is not open for modify. The type of the data is inconsistent with
the defintion.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2

To update the first row of a b-tree index "objclass" in "iueobs" with format :
objclass integer

camseq string 9

we do the following:
pick il

first in index

fetch from index

update index objclassl991camseqlLWP2345

To update the first row of an r-tree index "objclass" in "iueobs" with format
ral integer 4 decl integer 4

ra2 integer 4 dec2 integer 4

camseq string 9

we do the following:
pick i2

first in index

fetch from index

update index ral_23441decl1373841ra21394941dec21233991camseqlLWP2348

See Also:

insert

Advanced Communications Technology move

Command Name:

move

Purpose:

To move an index from an indexset into another index

Command Module:

uinms.exe

Synopsis:

move index <indexnamel> <indexsetl > <indexname2> <indexset2>

Parameters:

indexnamel- name of the source index

indexsetl- name of source parent indexset
indexname2- name of the destination index

indexset2- name of destination parent indexset

Description:

To move an index:
move index <indexnamel> <indexsetl> <indexname2> <indexset2>

Errors:

If there is no such source index, or such source indexset. The new index retains
the structure of the source index.

Examples:

To move an index with name "objclass" in indexset "iueobs" into index "objclass2"
in indexset "oldiue"

move index objclass iueobs objclass2 oldiue

See Also:

Advanced Communications Technology delete

Command Name:

delete

Purpose:

To delete current row of the current index of an indexset.

Command Module:

uinms.exe

Synopsis:

delete from index

Parameters:

none

Description:

To delete current row from the current index:

delete from index

Errors:

If the current index is not open for modify.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2

To delete the first row of a b-tree index "o_class" in "iueobs" with format :

objclass integer

camseq string 9

we do the following:

pick il

first in index

fetch from index

delete from index

To delete the second row of an r_ree index "rects" in "iueobs" with format:

ral integer 4 decl integer 4

ra2 integer 4 dec2 integer 4

camseq string 9

we do the following:

pick i2

first in index

fetch from index

next in index

fetch from index

delete from index

See Also:

Advanced Communications Technology copy

Command Name:

copy

Purpose:

To copy an index from an indexset into another index

Command Module:

uinms.exe

Synopsis:

copy index <indexnamel> <indexsetl> <indexname2> <indexset2> <mode>

Parameters:

indexnamel- name of the source index
indexsetl- name of source parent indexset
indexname2- name of the destination index
indexset2- name of destination parent indexset

mode- type of the new index (heap, hash, b-tree, r-tree)

Description:

To copy an index:
copy index <indexnamel> <indexsetl> <indexname2> <indexset2> <mode>

Errors:

If there is no such source index, or such source indexset.

Examples:

To copy an index with name "objclass" in indexset "iueobs" into another b-tree in-
dex "objclass2" in indexset "oldiue"

copy index objclass iueobs objclass2 oldiue b-tree

See Also:

Advanced Communications Technology search

Command Name:

search

Purpose:

To search the current index of an indexset.

Command Module:

uinms.exe

Synopsis:

search index <infUe> <outfile> <statfile>

Parameters:

infile- name of file containing terms
outfile- name of file containing pointers
pairfile- name of file containing term-pointer pairs
statfile- name of file containing statistics

Description:

To search an index:
search index <infile> <outfile> [<pairfile>] [<statfile>]

Errors:

If there is no index. If there is no indexset. If there is no input file.

Examples:

retrieve index objclass iueobs read-only il

retrieve index rects iueobs read-only i2

To search a b-tree index with name objclass in indexset iueobs where the input file
is "windows" and the output file is "observations", pairsfile is "pairs" and the statfile

is "stats"
pick il

search index windows observations pairs stats

The contents of file "windows" will be:

99

24

38

The contents of file "observations" will be:
LWP2346

LWP2346

LWP2347

The contents of file "pairs" will be:
99 LWP2346

24 LWP2346

24 LWP2347

The contents of file "stats" will be:

3 records found

To search n r-tree index with name objclass in indexset iueobs where the input file

Advanced Communications Technology search

is "windows" and the output file is "rects.dat", pairsfile is "pairs" and the staffile is
"stats"

pick i2

search index rects iueobs windows rects.dat pairs stats

the contents offile"windows" will be:
2344 37384 39494 23399

5344 47384 33394 83399

5344 47384 33394 83399

the contents offile "rects.dat" will be:
LWP2346

LWP2347

LWP2349

the contents offile"pai_" will be:
2344 37384 39494 23399 LWP2346

5344 47384 33394 83399 LWP2347

5344 47384 33394 83399 LWP2347

The contents offile "stats" will be:
3 records found

See Also:

Advanced Communications Technology retrieve

Command Name:

retrieve

Purpose:

To retrieve an index in an indexset.

Command Module:

uinms.exe

Synopsis:

retrieve index <indexname> <indexset> <mode> [<tag>]

Parameters:

indexname- name of the index

indexset- name of parent indexset
mode- mode of access (e.g., read or write) Default is read
tag- optional tag name (the system generates a tage if none is specified)

Description:

To retrieve an index:
retrieve index <indexname> <indexset> <mode> [<tag>]

Errors:

If there is no index. If there is no indexset. If there is no correct mode. etc.

Examples:

To retrieve a b-tree index with name objclass in indexset iueobs where the mode is
read:

retrieve index objclass iueobs read-only

To retrieve a hash index with name objclass in indexset iueobs where the mode is
write :

retrieve index objclass iueobs modify t3

To retrieve an r-tree index with name rects in indexset iueobs where the mode is
read:

retrieve index rects iueobs read-only

See Also:

Advanced Communications Technology pick

Command Name:

pick

Purpose:

To pick an index in an indexset and make it current.

Command Module:

uinms.exe

Synopsis:

pick index <tag>

Parameters:

tag- tag name

Description:

To pick an index:
pick index <tag>

Errors:

If there is no tag of that name.

Examples:

To pick an index tl :
pick index tl

See Also:

Advanced Communications Technology save

Command Name:

save

Purpose:

To save an index in an indexset.

Command Module:

uinms.exe

Synopsis:

save index <tag>

Parameters:

tag- tag name

Description:

To save an index:

save index <tag>

Errors:

If there is no tag of that name.

Examples:

To save a b-tree index tl with name objclass in indexset iueobs where the mode is
modify:

save index tl

To save a hash index t2 with name objclass in indexset iueobs where the mode is
modify:

save index t2

To save an r-tree index t3 with name rects in indexset iueobs where the mode is

modify:
save index t3

See Also:

Advanced Communications Technology return

Command Name:

return

Purpose:

To return an index in an indexset.

Command Module:

uinms.exe

Synopsis:

return index <tag>

Parameters:

tag- tag name

Description:

To return an index:

return index <tag>

Errors:

If there is no tag of that name.

Examples:

To return a b-tree index tl with name objclass in indexset iueobs where the mode is
read:

return index tl

To return a hash index t2 with name objclass in indexset iueobs where the mode is
write :

return index t2

To return an r-tree index t3 with name rects in indexset iueobs where the mode is
read:

return index t3

See Also:

Advanced Communications Technology list

Command Name:

list

Purpose:

To list the retrieved indexes.

Command Module:

uinms.exe

Synopsis:

list index

Parameters:

none

Description:

To list all retreived indexes:
list index

Errors:

If there is no tag of that name.

Examples:

retrieve index objclass

retrieve index rects iueobs

To list all indexes:
list index

The result is:
INDEX: iueobs/objclass TAG:

INDEX: iueobs/rects TAG:

iueobs modify

modify i2

il

i2

See Also:

il

Advanced Communications Technology first

Command Name:

first

Purpose:

To make the first row of the current index current.

Command Module:

uinms.exe

Synopsis:

first in index

Parameters:

none

Description:

To get the first row of the current index:
first in index

Errors:

If no index has been picked as current.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2

To retrieve first row of index il :

pick il

first in index

fetch from index

To retrieve first row of index i2:

pick i2

first in index

fetch from index

See Also:

Advanced Communications Technology next

Command Name:

next

Purpose:

To make the next row of the current index current.

Command Module:

uinms.exe

Synopsis:

next in index

Parameters:

none

Description:

To get the next row of the current index:
next in index

Errors:

If no index has been picked as current.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2

To retrieve next row of index i1:

pick il

first in index

next in index

fetch from index

To retrieve next row of index i2:

pick i2

first in index

next in index

fetch from index

See Also:

Advanced Communications Technology fetch

Command Name:

fetch

Purpose:

To display the current row of the current index.

Command Module:

uinms.exe

Synopsis:

fetch from index

Parameters:

none

Description:

To display the current row of the current index:
fetch from index

Errors:

If there is no current row.

Examples:

retrieve index objclass iueobs modify

retrieve index rects iueobs modify i2

To fetch last row of index il :

pick il

last in index

fetch from index

The last row is:

99 "LW92345"

To fetch first row of index i2:

pick i2

first in index

fetch from index

The first row is:
2344 37384 39494 23399 "LWP2348"

See Also:

il

Advanced Communications Technology last

Command Name:

last

Purpose:

To make the last row of the current index current.

Command Module:

uinms.exe

Synopsis:

last in index

Parameters:

none

Description:

To get the last row of the current index:
last in index

Errors:

If no index has been picked as current.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2

To retrieve last row of index il :

pick il

first in index

last in index

fetch from index

To retrieve last row of index i2:

pick i2

first in index

last in index

fetch from index

See Also:

Advanced Communications Technology previous

Command Name:

previous

Purpose:

To make the previous row of the current index current.

Command Module:

uinms.exe

Synopsis:

previous in index

Parameters:

none

Description:

To get the previous row of the current index:
previous in index

Errors:

If no index has been picked as current.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2

To retrieve previous row of index i1:
pick il

last in index

previous in index

fetch from index

To retrieve previous row of index i2:
pick i2

last in index

previous in index

fetch from index

See Also:

Advanced Communications Technology build boolean

Command Name:

build boolean

Purpose:

To build a boolean for searching an index in an indexset.

Command Module:

uinms.exe

Synopsis:

build boolean <expression> [<tag>]

Parameters:

expression - boolean condition
tag- optional tag name (the system generates a tag if none is specified)

Description:

To build a boolean for searching an index in an indexset:
build boolean <expression> [<tag>]

Errors:

If there is an incorrectly specified boolean.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2

To search for the first row of a b-tree index with name objclass in indexset iueobs

satisfying the condition objclass = 99:
pick index il

build boolean objclass=99 bl

pick boolean bl

first in index

fetch from index

To search for the first row of an r-tree index with name rects in indexset iueobs

satisfying the condition (ral ,dec1 ,ra2,dec2) overlaps (23,3456,85754,5599):
pick index i2

build boolean (ral,decl,ra2,dec2) OV (23,3456,85754,5599) bl

pick boolean bl

first in index

fetch from index

See Also:

Advanced Communications Technology list boolean

Command Name:

list boolean

Purpose:

To list the booleans.

Command Module:

uinms.exe

Synopsis:

list boolean

Parameters:

none

Description:

To list all booleans:
list boolean

Errors:

None.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2

To search for the first row of a b-tree index with name objclass in indexset iueobs

satisfying the condition objclass = 99:
build boolean objclass=99 bl

build boolean (ral,decl,ra2,dec2) OV (23, 3456, 85754, 5599) bl

To list all boolean:
list boolean

The result is:

BOOLEAN: objclass=99 TAG: bl

BOOLEAN: (ral,decl,ra2,dec2) OV (23,3456,85754,5599) TAG: b2

See Also:

Advanced Communications Technology pick boolean

Command Name:

pick boolean

Purpose:

To pick a boolean.

Command Module:

uinms.exe

Synopsis:

pick boolean <tag>

Parameters:

tag- tag name

Description:

To pick an boolean:
pick boolean <tag>

Errors:

If there is no tag of that name.

Examples:

To pick an boolean bl :
pick boolean bl

See Also:

Advanced Communications Technology modify boolean

Command Name:

modify boolean

Purpose:

To modify current boolean.

Command Module:

uinms.exe

Synopsis:

modify boolean <boolean>

Parameters:

boolean- the new boolean

Description:

To modify current boolean :
modify boolean <boolean>

Errors:

If the boolean is syntactically incorrect.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2

To search for the first row of a b-tree index with name objclass in indexset iueobs

satisfying the condition objclass = 99:
build boolean objclass=99 bl

build boolean (ral,decl,ra2,dec2) OV (23, 3456, 85754,5599) bl

To modify boolean bl:
pick boolean bl

modify boolean objclass=24

To modify boolean b2:
pick boolean b2

modify boolean (ral,decl,ra2,dec2) OV (23, 3456, 85754,5598)

See Also:

Advanced Communications Technology drop boolean

Command Name:

drop boolean

Purpose:

To drop a boolean.

Command Module:

uinms.exe

Synopsis:

drop boolean <tag>

Parameters:

tag- tag name

Description:

To drop a boolean:
drop boolean <tag>

Errors:

If there is no tag of that name.

Examples:

To drop boolean bl:
drop boolean bl

See Also:

Advanced Communications Technology create indexset

Command Name:

create indexset

Purpose:

To create an indexset.

Command Module:

uinms.exe

Synopsis:

create indexset <indexset>

Parameters:

indexset- name of parent inclexset

Description:

To create an inclexset
create indexset <indexset>

Errors:

If there is an existing indexset with the same name

Examples:

create indexset iueobs

See Also:

Advanced Communications Technology delete indexset

Command Name:

delete indexset

Purpose:

To delete an indexset

Command Module:

uinms.exe

Synopsis:

delete indexset <indexset>

Parameters:

indexset- name of parent indexset

Description:

To delete an indexset
delete indexset <indexset>

Errors:

If there is no existing indexset with name given

Examples:

delete indexset iueobs

See Also:

UIMS TEST SUITE

Steve Kelley

Nick Roussopoulos
Timos Sellis

Advanced Communication Technology Inc.
1209 Goth Lane

Silver Spring, Maryland 20905

Final Report

SBIR Phase II Contract Number NAS5-30628

Prepared for

Goddard Space Flight Center

Greenbelt, Maryland 20771

November 10, 1992

Advanced Communications Technology Inc.

README FILE

This directory tree contains the source code, libraries, executable, script, data and

test diroctory8 for the NASA sponsored UIMS system.

Directory List and Contents:

README - this file

Source Coda Directories:

include - header files (.h) which define UIMS internal structures

bTREE - sourQe

bind - 8oruce

heel - source

index - source

minirel

rtindex

sec - source

SIC aux

select - source

tools - source

and object code for "B-Trae" index type

coda for binding indexes to names

and object coda which de_l with boolean expressions

and obJsect code common to all index type8

source and object coda for basic file operations

r-tree index source and object clods (not available)

and object code for B-TrH creation

utility source and object code for B-Trees

and object code for index selection

and object code for UIMS utilities

Library Directory:

lib - object code libraries (made from the source directories)

Executable Directory:

bin - where the "index" executable is created/run from

Test Directories:

script - contains test scripts - conmmnd execution files

data - contains test data used by the scripts

db - (empty) directory where test may scripts be run

To Make a new version of the system:

Change directory (cd) to each of the source code directories (excluding

"include" and saving "index" for last) an type:

make all

For each directory excpting "index", this will compile the source code into object

code and create an obJdect coda library in "lib". Typing this in "index"

will result in compiling the source code thare and then link it with the

libraries to create the "index" executable in "bin".

Testing the System

If you wish to test the system, there are script files in

UIMS/script that act as input to an interactive program demonstrating the system.

TS-2 UIMS TEST SUITE

Advanced Communications Technology Inc.

Change to the "db" directory then execute the following command scripts.

They will completely test all functioning user level routines.

• ./bin/index <

• ./bin/index <

• ./bin/index <

• ./bin/index <

• ./bin/index <

• ./bin/indax <

./script/input.create.load.unload.help > test1

.�script�input.copy.move > test2

./script/input.retrieve.navigate.return > test3

./script/input.boolean.navigate > test4

./script/input.modify > test5

./script/input.drop > test6

All the 'test' files will show the error codes/return values for each

command in the input file. There are some commands that are intended

to give error codes beck (e.g. trying to update an index that was retrieved

for read only, requesting the previous tuple when currently at the beginning

of the index, etc.).

TS-3 UIMS TEST SUITE

Advanced Communications Technology Inc.

TEST SUIT

The teat suite consiste of 6 scripts. Below are the scripts and the output of

each of these teats.

input.create.load.unload.help

sarah

passwd

create

create

create

create

create

create

create

indexset sarahiset

indexset aliset

Indaxset Jeniset

indslset Joiset

index indexhp sarahisat

index indexhs sarahiset

index indexbt sarahiset

create index indexrt sarahiset

load index indexhp sarahiset .

load index indexhs sarahiset .

load indQx indexk_ serahiset .

load index indaxrt aarahiset .

unload index indexhp sarahisat

unload index indexhs sarahiaet

unload index indexk_ sarahiset

SCRIPT 1

heap ../deta/haap.def

hash ../data/hash.d el

btree ../data/btree.def

rtree ../data/rtree.def

./deta/sarahiset.deta

./data/aliset.data

./data/Jeniset.deta

./data/rtree.data

indexhp.unload

indexhs.unload

in_.unload

unload index indexrt sarahisat indexrt.unload

help index indeuchp sarahiset indexhp.help

help index indexhs sarahiset indexhs.help

help index indexbt sarahiset indexbt.help

help index indexrt sarahiset indexrt.help

quit

TS-4 UIMS TEST SUITE

Advanced Communications Technology Inc.

input, copy. move

sarah

pas swd

copy index indexhp sarahiset

copy index indexhs larahiset

copy index indexh_ sarahiset

copy index indexrt sarahisat

copy index indexhp sarahisat

copy index indexhp sarahiset

copy index indexhs sarahiset

copy index indexhs larahiset

copy index in_ sarahiset

copy index indexh_ sarahiset

move index indexhp sarah/set

move index indexhs sarahisat

move index indexh_ sarahiset

move index indexrt sarahiset

quit

SCRIPT 2

indexhp aliset

indexhs aliset

indexbt aliset

indexrt aliset

indexhsl Jenisat hash

indexbtl Jeniset btre@

indexhpl Janisot heap

indexbt2 Jeniset btrea

indeuchp2 _enisot heap

indexhs2 Jeniset hash

indexhp Joiset

indexhs Joisat

indexbt Joiset

indexrt Joiset

TS-5 UIMS TEST SUITE

AdvancedCommunications Technology Inc.

SCRIPT 3

input, retrieve, navigate, return

sarah

passwd

retrieve index indexhp Joiset read_only ihp

list index

pick index ihp

first in index

fetch from index

previous in index

first in index

next in index

fetch from index

last in index

fetch from index

next in index

last in index

previous in index

fetch from index

return index ihp

retrieve index indexhs Joisat read_only ihs

pick index ihs

first in indsx

fetch from index

previous in index

first in index

next in index

fetch from index

last in index

fetch from index

next in index

last in index

previous in index

fetch from index

return index ihs

retrieve index indexh_ Joisat read_only ibt

pick index ibt

first in index

fetch from index

previous in index

first in index

next in index

fetch from index

last in index

fetch from index

next in index

last in index

previous in index

fetch from index

return index ibt

retrieve index indexrt Joiset raad_onlu irt

pick index irt

batch search index . ./deta/rtree. search rtree-id, out rtrea-tup.out

TS-6 UIMS TEST SUITE

Advanced Communications Technology Inc.

return index irt

quit

TS-7 UIMS TEST SUITE

Advanced Communications Technology Inc.

SCRIPT

input, boolean, navigate

sarah

passwd

retrieve index indexhp Joiset read_only ihp

list index

pick index ihp

build boolean attra< "barbara" ibl

pick boolean ibl

first in index

fetch from index

previous in index

first in indax

next in index

fetch from index

last in index

fetch from index

next in index

last in index

previous in index

fetch from index

return index ihp

retrieve index indexhs Joiset read_only ihs

pick index ihs

pick boolean ibl

first in index

fetch from index

previous in index

first in index

next in index

fetch from index

last in index

fetch from index

next in index

last in index

previous in index

fetch from index

return index ihs

retrieve index indexh_ joiset read only ibt

pick index ibt

pick boolean ibZ

first in index

fetch from index

previous in index

first in index

next in index

fetch from index

last in index

fetch from index

next in index

last in index

previous in index

fetch from index

TS-8 UIMS TEST SUITE

Advanced Communications Technology Inc.

return index ibt

drop boolean ibl

quit

TS-9 UIMS TEST SUITE

Advanced Communications Technology Inc.

SCRIPT 5

input, modify

sarah

passwd

retrieve index indexhp Joiset modify ihp

list index

pick index ihp

last in index

fetch from index

update index attra_imos sellisli_3030

last in index

fetch from index

delete from index

last in index

fetch from index

insert into index attralnick roussopoulouslidlg090

last in index

fetch from index

save index ihp

return index ihp

retrieve index indexhs Joiset modify ihs

pick index ihs

last in index

fetch from index

update index attrelrichard wallaceIi_3030

last in index

fetch from index

delete from index

last in index

fetch from index

insert into index attre_ick roussopoulousli_9090

last in index

fetch from index

save index ihs

return index ihs

retrieve index indexbt Joiset modify ibt

pick index ibt

last in index

fetch from index

update index attra_imos sellisli_3030

last in index

fetch from index

delete from index

last in index

fetch from index

insert into index attra_ick roussopoulousli_9090

last in index

fetch from index

save index ibt

return index ibt

retrieve index indexhp Joiset read_only ihp

list index

pick index ihp

TS-10 UIMS TEST SUITE

Advanced Communications Technology Inc.

last in index

fetch from index

update index attra_imos sellisli_3030

last in index

fetch from index

delete from index

last in index

fetch from index

insert into index attra_ick roussopoulousli_9090

last in index

fetch from index

save index ihp

return index ihp

retrieve index indexhs Joiset read_only ihs

pick index ihs

last in index

fetch from index

update index attra_imos sellislic_3030

last in index

fetch from index

delete from index

last in index

fetch from index

insert into index attra_ick roussopoulousIi¢_9090

last in index

fetch from index

save index ihs

return index ihs

retrieve index indeacbt Joiset read_only ibt

pick index ibt

last in index

fetch from index

update index attra_imos sellisli¢_3030

last in index

fetch from index

delete from index

last in index

fetch from index

insert into index attra_ick roussopoulouslidl9090

last in index

fetch from index

save index ibt

return index ibt

quit

TS-11 UIMS TEST SUITE

Advanced Communications Technology Inc.

input, drop

sarah

pas swd

drop index indexhp alisot

drop index indexhs aliset

drop index indoxbt aliset

drop index indoxhp Joiset

drop index indoxhs Joiset

drop index indoxh_ Joiaot

drop index indoxhpl Jeniset

drop index indexhp2 Jeniset

drop index indoxhsl Jeni.et

drop index indexhs2 Jeniset

drop index indexbtl Jenisot

drop index index]yt2 Jeniset

doloto indoxset sarahiset

deleto indaxset aliset

delete indexset Jeniset

delete indexaot Joiset

quit

SCRIPT

TS-12 UIMS TEST SUITE

AdvancedCommunicationsTechnologyInc.

TEST 1

Please enter your username: Please enter your password:

Need to validate user end password.

COMMANDS AND THEIR SYNTAX:

create index

drop index

copy index

move index

help index

load index

unload index

insert into index

update index <attr,

delete from indax

delete rectangle

first in index

next in index

last in index

previous in index

fetch from index

save index

return index

pick index

build boolean

list boolean

pick boolean

<indexname> <indexset> <format> <infile>

<indexname> <indexset>

<from-index> <from-indexset> <to-index> <to-indexset> [<format>]

<from-index> <from-indexset> <to-index> <to-indexset>

<indexnanm> <indexset>

<indexnanm> <indexset> <infile>

<indexnanm> <indexset> <outfile>

<attr, value, attr, value >

value, art r, value, .>

<id>

batch search index <infile> <idfile> [<tuplefile>]

search index <idfile> [<tuplefile>]

list index

retrieve index <indexnanm> <indexset> <mode> [<tag>]

<tag>

<tag>

<tag>

<boolean definition> [<tag>]

<tag>

modify boolean <boolean definition>

drop boolean <tag>

build select <attr, attr, .> [<tag>]

list select

pick select <tag>

modify select <attr, attr, .>

drop select <tag>

create indexset <indexset>

delete indexset <indexset>

>>> COMMAND EXECUTED: create indexset sarahiset

RETURN CODE: 0

>>> CO_AND EXECUTED: create indexset aliset

RETURN CODE: 0

>>> CO_ND EXECUTED: create indexset Jeniset

RETURN CODE: 0

>>> COM$_ND EXECUTED: create indexset Joiset

RETURN CODE: 0

>>> CO_ND EXECUTED: create index indexhp sarahiset heap ../data/heap.def

RETURN CODE: 0

>>> COMMAND EXECUTED: create index indexhs sarahiset hash ../data/hash.def

RETURN CODE: 0

>>> COMMAND EXECUTED: create index indexbt sarahiset btree ../data/btree.def

TS-13 UIMS TEST SUITE

AdvancedCommunicationsTechnologyInc.

RETURN CODE : 0

>>> COMMAND EXECUTED : create index indexrt sarahiset rtree . ./deta/rtree. def

RETURN CODE : 0

>>> COH_AND EXECUTED: load index indexhp sarahiset . ./data/sarahiset.data

RETURN CODE : 0

>>> COMKAND EXECUTED: load index indexhs sarahiset . ./data/aliset.data

RETURN CODE : 0

>>> COM_D EXECUTED: load index indexbt 8arahiset . ./data/Jeniset.deta

RETURN CODE : 0

>>> COM_%ND EXECUTED: load index indexrt 8arahiset ../data/rtree.data

RETURN CODE : 0

>>> COMMAND EXECUTED: unload index indexhp sarahiset indexhp.unload

RETURN CODE : 0

>>> COMR_ND EXECUTED: unload index indexhs 8arahiset indexhs .unload

RETURN CODE : 0

>>> COMNAND EXECUTED: unload index indexbt 8arahiset indexh_.unload

RETURN CODE : 0

>>> COH_L._D EXECUTED: unload index indexrt sarahiset indexrt.unload

RETURN CODE : 0

>>> COMm_M_D EXECUTED: help index indexhp sarahiset indexhp.help

RETURN CODE : 0

>>> CO_agAND EXZCUTED: help index indexhs sarahiset indexhs.help

RETURN CODE : 0

>>> COMR_D EXECUTED: help index indexh_ sarahiset indexk_.help

RETURN CODE : 0

>>> CO_DO2_D EXECUTED: help index indexrt sarahiset indexrt.help

RETURN CODE : 0

>>> COM_D EXECUTED: quit

RETURN CODE : 0

TS-14 UIMS TEST SUITE

Advanced Communications Technology Inc.

TEST 2

Please enter your username: Please enter your password:

Need to validate user and password.

COMMANDS AND T_IR SYNTAX:

create index

drop index

copy index

move index

help index

load index

unload index

<indexname> <indexset> <format> <infile>

<indexnan_> <indexset>

<from-index> <from-indaxset> <to-index> <to-indexset> [<format>]

<from-index> <from-indexset> <to-index> <to-indexset>

<indexnan_> <indexset>

<indexname> <indexset> <infile>

<indexname> <indexset> <outfile>

save index

return index

pick index

build boolean

list boolean

pick boolean

insert into index <attr, value, attr, value,

update index <attr, value, attr, value, .>

delete from index

delete rectangle <id>

first in index

next in index

last in index

previous in index

fetch from index

batch search index <infile> <idfile> [<tuplefile>]

search index <idfilo> [<tuplofile>]

list index

retrieve index <indexname> <indexset> <mode> [<tag>]

<tag>

<tag>

<tag>

<boolean definition> [<tag>]

<tag>

modify boolean <boolean definition>

drop boolean <tag>

build select <attr, attr,

list select

pick select <tag>

modify select <attr, attr, .>

drop select <tag>

create indexset <indexset>

delete indexset <indexset>

• .> [<tag>]

.>

>>> COMMAND EXECUTED: copy index indexhp 8arahisat indexhp aliset

RETURN CODE : 0

>>> COMMAND EXECUTED: copy index indoxh8 8arahisat indexh8 alisot

RETURN CODE : 0

>>> CO_AND EXECUTED: copy index indexl_ 8arahisat indexJ_ alisot

RETURN CODE : 0

>>> COMMAND EXECUTED: copy index indexrt 8arahiset indexrt aliset

RETURN CODE : 0

>>> COrtLaND EXECUTED: copy index indexhp 8arahisat indexh81 Jeniset hash

RETURN CODE : 0

>>> COMMAND EXECUTED: copy index indexhp sarahiset indexh_l jeniset btree

RETURN CODE : 0

>>> COMMAND EXECUTED: copy index indexh8 8arahiset indexhpl Jeniset heap

TS-15 UIMS TEST SUITE

Advanced Communications Technology Inc.

RETURN CODE : 0

>>> COMMAND EXECUTED: copy index indexhs 8arahiset indexbt2 Jeniset btree

RETURN CODE : 0

>>> COMMAND EXECUTED: copy index indexh_ sarahiset indexhp2 Jeniset heap

RETURN CODE : 0

>>> COJ_ND EXECUTED: copy index indexh_ sarahisat indexhs2 Jenisat hash

RETURN CODE : 0

>>> CO_JO_D EXECUTED: move index indexhp sarahisat indexhp Joisat

RETURN CODE : 0

>>> COMMAND EXECUTED: move index indexhs sarahiset indexhs Joiset

RETURN CODE : 0

>>> COMM_D EXECUTED: move index index1_ sarahiset indexk_ Joiset

RETURN CODE : 0

>>> COM|_ND EXECUTED: move index indexrt sarahiset indexrt Joiset

RETURN CODE : 0

>>> COMMAND EXECUTED: quit

RETURN CODE : 0

TS-16 UIMS TEST SUITE

Advanced Communications Technology Inc.

TEST 3

Please enter your username: Please enter your password:

Need to validate user end password.

COHMANDS AND THEIR SYNTAX:

create index

drop index

copy index

move index

help index

load index

unload index

<inde_nanm> <indexset> <format> <infile>

<indexname> <indexset>

<from-index> <from-indexset> <to-index> <to-indexset> [<format>]

<from-index> <from-indexset> <to-index> <to-indexset>

<indexname> <indexset>

<indexnamm> <indexset> <infile>

<indexname> <indaxset> <outfile>

save index

return index

pick index

build boolean

list boolean

pick boolean

insert into index <attr, value, attr, value,

update index <attr, value, attr, value, .>

delete from index

delete rectangle <id>

first in index

next in index

last in index

previous in index

fetch from index

batch search index <infile> <idfile> [<tuplefile>]

search index <idfile> [<tuplefile>]

list index

retrieve index <indexname> <indexset> <mode> [<tag>]

<tag>

<tag>

<tag>

<boolean definition> [<tag>]

<tag>

modify boolean <boolean definition>

drop boolean <tag>

build select <attr, attr,

list select

pick select <tag>

modify select <attr, attr, .>

drop seleot <tag>

create indaxset <indexset>

delete indaxset <indexset>

•> [<tag>]

.>

>>> CO_NAND EXECUTED: retrieve index indaxhp Joiset read_only ihp

RETURN CODE : 0

>>> CO_R4AND EXECUTED: list index

Tag : IHP Value : JOISET/INDEXRP

RETURN CODE : 0

>>> CO_AND EXECUTED: pick index ihp

RETURN CODE : 0

>>> CO$_ND EXECUTED: first in index

RETURN CODE : 0

>>> CO_AND EXECUTED: fetch from index

Tuple: aloysius yoon[123

RETURN CODE : 0

>>> COMMAND EXECUTED: previous in index

TS-17 UIMS TEST SUITE

Advanced Communications Technology Inc.

RETURN CODE : -2

>>> COMMAND EXECUTED: first in index

RETURN CODE : 0

>>> COMMAND EXECUTED: next in index

RETURN CODE : 0

>>> COMm_%ND EXZCUTED: fetch from index

Tuple: Jennifer carle1234

RETURN CODE : 0

>>> COM_%ND EXECUTED: last in index

RETURN CODE : 0

>>> COM_%ND EXECUTED: fetch from index

Tuple : barb towe_45

RETURN CODE : 0

>>> COM_%ND EXECUTED : next in index

RETURN CODE : -2

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMmQ_.ND EXECUTED: previous in index

RETURN CODE : 0

>>> COMNAND EXECUTED: fetch from index

Tuple : dean perkins134

RETURN CODE : 0

>>> COMDm,_IqD EXECUTED: return index ihp

RETURN CODE : 0

>>> COMMAND EXECUTED: retrieve index indexhs Joiset read_only ihs

RETURN CODE : 0

>>> COMMAND EXECUTED: pick index ihs

RETURN CODE : 0

>>> COMmO_D EXECUTED: first in index

RETURN CODE : 0

>>> COMKAND EXECUTED: fetch from index

Tuple : stephen wallace15678

RETURN CODE : 0

>>> C0M_hND EXECUTED: previous in index

RETURN CODE : -2

>>> COMMAND EXECUTED: first in index

RETURN CODE : 0

>>> COMMAND EXECUTED: next in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: lillian wallace16789

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMm_d_D EXECUTED: fetch from index

Tuple: richard wallace12345

RETURN CODE : 0

>>> COMR_%ND EXECUTED: next in index

RETURN CODE : -2

>>> C0M_%ND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: previous in index

RETURN CODE : 0

TS-18 UIMS TEST SUITE

Advanced Communications Technology Inc.

>>> COMMAND EXECUTED: fetch from index

Tuple: 8andra wallac_1234

RETURN CODE : 0

>>> COHKAND EXECUTED: return index ih8

RETURN CODE : 0

>>> COIe4AND EXECUTED: retrieve index indexbt Joiset read_only ibt

RETURN CODE : 0

>>> COHereD EXECUTED: pick index ibt

RETURN CODE : 0

>>> CO_ND EXZCUTED: first in index

RETURN CODE : 0

>>> COH_%ND EXECUTED: fetch from index

Tuple : allen wallacoJ7890

RETURN CODE : 0

>>> COMMAND EXECUTED: previous in index

RETURN CODE : -2

>>> CO_ND EXECUTED: first in index

RETURN CODE : 0

>>> CO_NAND EXECUTED: next in index

RETURN CODE : 0

>>> CO$_.IqD EXECUTED: fetch from index

Tuple: amy wallace[12

RETURN CODE : 0

>>> COnDYlOID EXECUTED: last in index

RETURN CODE : 0

>>> CO_R_ND EXECUTED : fetch from index

Tuple: wally towe_56

RETURN CODE : 0

>>> COMMAND EXECUTED : next in index

RETURN CODE : -2

>>> COM_ND EXECUTED: last in index

RETURN CODE : 0

>>> COMR_D EXECUTED: previous in index

RETURN CODE : 0

>>> CO_D_%ND EXECUTED : fetch from index

Tuple: peggy wallace[8901

RETURN CODE : 0

>>> COMMAND EXECUTED: return index ibt

RETURN CODE : 0

>>> CO_D EXECUTED: retrieve index indexrt Joiset read onlu irt

RETURN CODE : 0

>>> COMMAND EXECUTED: pick index irt

RETURN CODE : 0

>>> CO_%ND EXECUTED: batch search index . ./data/rtree. search rtree-id.out rtroe-tup.out

RETURN CODE : 0

>>> CO_n_AND EXECUTED: return index irt

RETURN CODE : 0

>>> COM_ND EXECUTED: quit

RETURN CODE : 0

TS-19 UIMS TEST SUITE

Advanced Communications Technology Inc.

TEST 4

Please enter your username: Please enter your password:

Need to validate user and password.

COMMANDS AND THEIR SYNTAX:

create index

drop index

copy index

move index

help index

load index

unload index

insert into index

update index <attr,

delete from index

delete rectangle

first in index

next in index

last in index

previous in index

fetc/_ from index

save index

return index

pick index

build_molean

list boolean

pick boolean

<indexname> <indexset> <format> <infile>

<indexname> <indexset>

<from-index><from-indaxset> <to-index> <to-indexset> [<format>]

<from-index><from-indexset> <to-index> <to-indexset>

<indexname> <indexset>

<index_amm> <indexset> <infila>

<indexname> <indexset> <outfile>

<attr, value, attr, value, .>

value, attr, value, .>

<id>

batch search index <infile> <idfile> [<tuplefile>]

search index <idfile> [<tuplefile>]

list index

retrieve index <indexname><indexset><mode> [<tag>]

<tag>

<tag>

<tag>

<boolean definition> [<tag>]

<tag>

modify boolean <boolean definition>

drop boolean <tag>

build select <attr, attr,

list select

pick select <tag>

modify select <attr, attr, . .>

drop select <tag>

create indaxset <indexsat>

delete indexset <indexsat>

•> [<tag>]

>>> COMMAND EXECUTED: retrieve index indexhp Joliet read_only ihp

RETURN CODE : 0

>>> COMMAND EXECUTED: list index

Tag: IHP Value : JOISET/INDEXHP

RETURN CODE : 0

>>> COMMAND EXECUTED: pick index ihp

RETURN CODE : 0

>>> COMMAND EXECUTED : build boolean attra < "barbara" ibl

RETURN CODE : 0

>>> COMMAND EXECUTED: pick buolean ibl

RETURN CODE : 0

>>> COM$_2_D EXECUTED: first in index

RETURN CODE : 0

TS-20 UIMS TEST SUITE

Advanced Communications Technology Inc.

>>> CONm_ND EXECUTED: fetch from index

Tuple : aloysiu8 yoon[123

RETURN CODE : 0

>>> CO_W%ND EXECUTED: previous in index

RETURN CODE : -2

>>> COIO_ND EXECUTED: first in index

RETURN CODE : 0

>>> COMMAND EXECUTED: next in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: allen wallace[7890

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COIadAND EXECUTED: fetch from index

Tuple : barb towe_45

RETURN CODE : 0

>>> COSDdAND EXECUTED : next in index

RETURN CODE : -2

>>> CO$_4AND EXECUTED: last in index

RETURN CODE : 0

>>> CO_ND EXECUTED: previous in index

RETURN CODE : 0

>>> CO_ND EXECUTED: fetch from index

Tuple : amy wallace[12

RETURN CODE : 0

>>> COIa_D EXZCUTED: return index ihp

RETURN CODE : 0

>>> CO_%ND EXECUTED: retrieve index indexh8 Joliet read_only ihs

RETURN CODE : 0

>>> CObnO2_D EXECUTED : pick index ih8

RETURN CODE : 0

>>> COMMAND EXECUTED: pick boolean ihl

RETURN CODE : 0

>>> COSgM_ND EXECUTED: first in index

RETURN CODE : 0

>>> CO_M_D EXECUTED : fetch from index

Tuple: amy wallace[12

RETURN CODE : 0

>>> COMMAND EXECUTED: previous in index

RETURN CODE : -2

>>> CO$_AND EXECUTED: first in index

RETURN CODE : 0

>>> COM_MqD EXECUTED: next in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: allen wallace[7890

RETURN CODE : 0

>>> CO_/qD ZXECUTED: last in index

RETURN CODE : 0

>>> CO_D EXECUTED: fetch from index

Tuple: allen wallaceJ7890

RETURN CODE : 0

TS-21 UIMS TEST SUITE

Advanced Communications Technology Inc.

>>> COI4AND EXECUTED: next in index

RETURN CODE : -2

>>> COM_%ND EXECUTED: last in index

RETURN CODE : 0

>>> CO_m4AND EXECUTED: previous in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: amy wallaaeil2

RETURN CODE : 0

>>> COM_L_TD EXECUTED: return index ihs

RETURN CODE : 0

>>> CO_GUqD EXECUTED: retrieve index indexbt Joiset read_only ibt

RETURN CODE : 0

>>> COMMAND EXECUTED: pick index ibt

RETURN CODE ." 0

>>> COJR4AND EXECUTED: pick boolean ibl

RETURN CODE : 0

>>> COMMAND EXECUTED: first in index

RETURN CODE : 0

>>> COB4AND EXECUTED : fetch from index

Tuplo: allen wallaoe17890

RETURN CODE : 0

>>> COb_4AND EXECUTED: previous in index

RETURN CODE : -2

>>> COJ6_ND EXECUTED: first in index

RETURN CODE : 0

>>> CONR_D EXECUTED: next in index

RETURN CODE : 0

>>> COM|4AND EXECUTED: fetch from index

Tuple : amy wallace112

RETURN CODE : 0

>>> COEMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple : barb towe_45

RETURN CODE : 0

>>> COMMAND EXECUTED: next in index

RETURN CODE : -2

>>> CObDL_ND EXECUTED: last in index

RETURN CODE : 0

>>> COE_/AND EXECUTED: previous in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: amy wallacell2

RETURN CODE : 0

>>> COMMAND EXECUTED: return index ibt

RETURN CODE : 0

>>> COkMAND EXECUTED: drop boolean ibl

RETURN CODE : 0

>>> COMMAND EXECUTED: quit

RETURN CODE : 0

TS-22 UIMS TEST SUITE

AdvancedCommunicationsTechnologyInc.

TEST 5

Please enter your username: Please enter your password:

Need to validate user and password.

COMMANDS AND THEIR SYNTAX:

create index

drop index

copy index

move index

help index

load index

unload index

<indexname> <indexset> <format> <infile>

<indexnan_> <indaxset>

<from-index> <from-indaxset> <to-index> <to-indexset> [<format>]

<from-index> <from-indaxset> <to-index> <to-indexset>

<indexnan_> <indexset>

<ind_xnan_> <indexset> <infile>

<indexnan_> <indexset> <outfile>

save index

return index

pick index

build boolean

list boolean

pick boolean

insert into index <attr, value, attr, value,

update index <attr, value, attr, value, .>

delete from index

delete rectangle <id>

first in index

next in index

last in index

previous in index

fetch from index

batch search index <infile> <idfile> [<tuplefile>]

search index <idfile> [<tuplefile>]

list index

retrieve index <indexname> <indexset> <mode> [<tag>]

<tag>

<tag>

<tag>

<boolean definition> [<tag>]

<tag>

modify boolean <boolean definition>

drop boolean <tag>

build select <attr, attr,

list select

pick select <tag>

modify select <attr, attr, .>

drop select <tag>

create indaxset <indexset>

delete indexs et <indexset>

• > [<tag>]

.>

>>> COM_%ND EXECUTED: retrieve index indexhp Joiset modify ihp

RETURN CODE : 0

>>> COM_O_D EXECUTED: list index

Tag : IHP Value : JOISET/INDEXHP

RETURN CODE : 0

>>> COMKAND EXECUTED: pick index ihp

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: barb towe_45

RETURN CODE : 0

>>> COM_M_%ND EXECUTED: update index attra_imos sellisli_3030

TS-23 UIMS TEST SUITE

AdvancedCommunicationsTechnologyInc.

RETURN CODE : 0

>>> CO_KAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuplo: times 8ellisj3030

RETURN CODE : 0

>>> COMKAND EXECUTED: delete from index

RETURN CODE : 0

>>> COMmOLIqD EXECUTED: last in index

RETURN CODE : 0

>>> CO_NAND EXECUTED: fetch from index

Tuple : dean perkinsJ34

RETURN CODE : 0

>>> COMMAND EXECUTED: insert into index attra_ick roussopoulousJi_9090

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMRhKND EXECUTED: fetch from index

Tuplo: nick roussopoulousJg090

RETURN CODE : 0

>>> COMMAND EXECUTED: save index ihp

RETURN CODE : 0

>>> COMR_hqD EXECUTED: return index ihp

RETURN CODE : 0

>>> COMMAND EXXCUTED: retrieve index indexh8 Joisot modify ih8

RETURN CODE : 0

>>> COba_%ND EXECUTED: pick index ih8

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple : richard wallaceJ2345

RETURN CODE : 0

>>> COMMAND EXECUTED: update index attraJrichard wallaceJi_3030

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple : richard welleceJ3030

RETURN CODE : 0

>>> COHMAND EXECUTED: delete from index

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: 8andra wallac_1234

RETURN CODE : 0

>>> COMMAND EXECUTED: insert into index attra_ick roussopoulous[i_g090

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple : 8andra wallac_1234

TS-24 UIMS TEST SUITE

AdvancedCommunicationsTechnologyInc.

RETURN CODE : 0

>>> COMMAND EXECUTED:

RETURN CODE : 0

>>> COMMAND EXECUTED :

RETURN CODE : 0

>>> COMMAND EXECUTED :

RETURN CODE : 0

>>> COMMAND EXECUTED: pick index ibt

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COJaIAND EXECUTED: fetch from indQx

Tuple: wally towe_56

RETURN CODE : 0

save index ihs

return index ih8

retrieve index indexbt Joiset modify ibt

>>> COMMAND EXECUTED: update index attra_imos sellisli_3030

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: times sellisl3030

RETURN CODE : 0

>>> COMMAND EXECUTED: delete from index

RETURN CODE : 0

>>> CO_L_qD EXECUTED: last in index

RETURN CODE : 0

>>> CON_-_TD EXECUTED: fetch from index

Tuple: peggy wallace18901

RETURN CODE : 0

>>> COMMAND EXZCUTED: insert into index attralnick roussopoulous[i_9090

RETURN CODE : 0

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: peggy wallaoe18901

RETURN CODE : 0

>>> CO_AND EXECUTED: save index ibt

RETURN CODE : 0

>>> COMMAND EXECUTED: return index ibt

RETURN CODE : 0

>>> COMMAND EXECUTED: retrieve index indexhp joiset read_only ihp

RETURN CODE : 0

>>> COMMAND EXECUTED: list index

Tag : I_ Value : JOISET/INDEXHP

RETURN CODE : 0

>>> COMMAND EXECUTED: pick index ihp

RETURN CODE : 0

>>> COM_ND EXECUTED: last in index

RETURN CODE : 0

>>> COrtLaND EXECUTED : fetch from index

Tuple : nick roussopoulouslg090

RETURN CODE : 0

>>> COrtLaND EXECUTED: update index attraltimo8 selli81i_3030

RETURN CODE : - 9

TS-25 UIMS TEST SUITE

Advanced Communications Technology Inc.

>>> COln_%ND EXECUTED: last in index

RETURN CODE : 0

>>> CO}aO_RD EXECUTED: fetch from index

Tuple : nick roussopoulous[g090

RETURN CODE : 0

>>> COJa_AND EXECUTED: delete from index

RETURN CODE : - 9

>>> CO_kAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: nick roussopoulous[g090

RETURN CODE : 0

>>> COm_kND EXECUTED: insert into index attra_ick roussopoulousJi_9090

RETURN CODE : -g

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: nick roussopoulous[9090

RETURN CODE : 0

>>> CO$_ND EXECUTED: save index ihp

RETURN CODE: -9

>>> COSa_D EXECUTED: return index ihp

RETURN CODE : 0

>>> COMMAND EXECUTED: retrieve index indexhs Joiset read_only ihs

RETURN CODE : 0

>>> COJ4AND EXECUTED: pick index ihs

RETURN CODE : 0

>>> CONMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: sandra wallac_1234

RETURN CODE : 0

>>> COMMAND EXECUTED: update index attra_imos sellisJi_3030

RETURN CODE : -g

>>> CO_2_D EXECUTED: last in index

RETURN CODE : 0

>>> CO_4AND EXZCUTED: fetch from index

Tuple: sandra wallac_1234

RETURN CODE : 0

>>> COM_TD EXECUTED : delete from index

RETURN CODE: -g

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: sandra wallac_1234

RETURN CODE : 0

>>> COMMAND EXECUTED: insert into index attra_ick roussopoulous[i_9090

RETURN CODE: -9

>>> CObOfAND EXECUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple : sandra wallac_1234

RETURN CODE : 0

TS-26 UIMS TEST SUITE

Advanced Communications Technology Inc.

>>> COMMAND EXECUTED: save index ihs

RETURN CODE: -9

>>> COMMAND EXECUTED: return index ihs

RETURN CODE : 0

>>> CONMAND EXECUTED: retrieve index indexbt Joiset read_only ibt

RETURN CODE : 0

>>> COmmAND EXECUTED: pick index ibt

RETURN CODE : 0

>>> COMk_2_D EXZCUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: peggy wallace[8901

RETURN CODE : 0

>>> COM_D EXECUTED: update index attra_imo8 selli8]i_3030

RETURN CODE: -9

>>> COMMAND EXECUTED: last in index

RETURN CODE : 0

>>> COM|4AND EXECUTED: fetch from index

Tuple: peggy wallace[8901

RETURN CODE : 0

>>> COJa_AND EXECUTED: delete from index

RETURN CODE: -9

>>> COMM_ND EXECUTED: last in index

RETURN CODE : 0

>>> COMRh_TD EXECUTED: fetch from index

Tuple: peggy wallace[8901

RETURN CODE : 0

>>> COMMAND EXECUTED: insert into index attra_ick roussopoulous[i_9090

RETURN CODE : -9

>>> COM_qD EXZCUTED: last in index

RETURN CODE : 0

>>> COMMAND EXECUTED: fetch from index

Tuple: peggy wallaceJ8901

RETURN CODE : 0

>>> COMkAND EXZCUTED: save index ibt

RETURN CODE : - 9

>>> COM_%ND EXECUTED: return index ibt

RETURN CODE : 0

>>> COMMAND EXECUTED: quit

RETURN CODE : 0

TS-27 UIMS TEST SUITE

Advanced Communications Technology Inc.

TEST 6

Please enter your username: Please enter your password:

Need to validate user and password.

COMMANDS AND THEIR SYNTAX:

create index

drop index

copy index

move index

help index

load index

unload index

<inde_namm> <indexset> <format> <infile>

<indexname> <indexset>

<from-index> <from-indexset> <to-index> <to-indexset> [<format>]

<from-lndex> <from-indexset> <to-index> <to-indexset>

<indexname> <indexset>

<indexname> <indexset> <infile>

<indexname> <indexset> <outfile>

save index

return index

pick index

build boolean

list boolean

pick boolean

insert into index <attr, value, attr, value,

update index <attr, value, attr, value, .>

delete from index

delete rectangle <id>

first in index

next in index

last in index

previous in index

fetch from index

batch search index <infile> <idfile> [<tuplefile>]

search index <idfile> [<tuplefile>]

list index

retrieve index <indexname> <indexset> <mode> [<tag>]

<tag>

<tag>

<tag>

<boolean definition> [<tag>]

<tag>

modify boolean <boolean definition>

drop boolean <tag>

build select <attr, attr, .> [<tag>]

list select

pick select <tag>

modify seleat <attr, attr, .>

drop select <tag>

create indexsot <indexset>

delete indexset <indexset>

>>> COMMAND EXECUTED: drop index indexhp aliset

RETURN CODE : 0

>>> COMMAND EXZCUTED: drop index indexhs aliset

RETURN CODE : 0

>>> COMm4AND EXECUTED: drop index indexh_ aliset

RETURN CODE : 0

>>> COMMAND EXECUTED: drop index index/%p Joiset

RETURN CODE : 0

>>> COMMAND EXECUTED: drop index indexh8 Joiset

RETURN CODE : 0

>>> COMMAND EXECUTED: drop index indexbt Joiset

RETURN CODE : 0

>>> COM_4AND EXECUTED: drop index indexhpl jeniset

.>

TS-28 UIMS TEST SUITE

Advanced Communications Technology Inc.

RETURN CODE : 0

>>> COM_ND EXECUTED: drop index indexhp2 Jenisot

RETURN CODE : 0

>>> CO_KAND EXECUTED: drop index indexhsl Jenilot

RETURN CODE : 0

>>> COb_D_ND EXECUTED: drop index indexhs2 Jenisot

RETURN CODE : 0

>>> COmmAND EXECUTED: drop indax indexh_l Jeniset

RETURN CODE : 0

>>> COZO2_D EXECUTED: drop index indexbt2 Jonisot

RETURN CODE : 0

>>> COkmD_ND EXECUTED: delete indexset sarahiset

RETURN CODE : 0

>>> COMMAND EXECUTED: daloto indexsot alisot

RETURN CODE : 0

>>> COMMAND EXECUTED: delete indexset Jeniset

RETURN CODE : 0

>>> COMMAND EXECUTED: delete indexset Joiset

RETURN CODE : 0

>>> COba_AND EXECUTED: quit

RETURN CODE : 0

TS-29 UIMS TEST SUITE

[

i N A S A Report Documentation Page
I

Jl. Report No.
I

FI NAL 2. Government Assession No.

,4. Title and Subtitle

VIEWCACHE: An Incremental Pointer-Based

Access Method for Distributed Databases

7. Author(s)

Steve Kelley, Nick Roussopoulos, Timos Sellis

9. Performing Organization Name and Address

Advanced Communication Technology Inc.

1 209 Goth Lane

Silver Spring, MD 20905

112. Sponsoring Agency Name and Address

NASA

Washington, D.C. 20546-0001

ITO: Dr. Barry Jacobs

Code 934

Goddard Space Flight Center

Greenbelt, MD 20771

3. Recipient's Catalog No.

5. Report Date

31 -Oct-92

6. Performing Organization Code

N/A

8. Performing Organization Report No.

FINAL

15. Supplementary Notes

10. Work Unit No.

11. Contract or Grant No.

NAS5-30628

. Type of Report and Period Covered

FINAL

May 2, 1989- October 31, 1992

14. Sponsoring Agency Code

16. Abstract

The goal of the Universal Index System (UIS), is to provide

an easy-to-use and reliable interface to many different

kinds of database systems. The impetus for this system was

to simplify database index management for users, thus

encouraging the use of indexes. As the idea grew into an

actual system design, the concept of increasing database

performance by facilitating the use of time-saving tech-

niques at the user level became a theme for the project.

were don on the IUE database.

This Final Report describes the Design, the Implementation of

UIS, and its Language Interfaces. It also includes the User's Guide

and the Reference Manual.

17. Key Words (Suggested by Author(s))

Indexing, Spatial Access Methods,

R-trees, Index Management System

8. Distribution Statement

20. Security Classif. 121.
(of page)

U

No. of Pages

563

19. Security Classif. (of this report)

U

_IASA FORM 1626 Oct 86

22. Price

